

LDEO RECEIPT 2023 FEB -1 PM 4: 27

Koch Methanol St. James 5181 Wildcat Street St. James, LA 70086

> Post Office Box 510 Vacherie, LA 70090

HAND DELIVERED

February 1, 2023

Louisiana Department of Environmental Quality Office of Environmental Services PO Box 4313 Baton Rouge, LA 70821-4313

RE: Koch Methanol St. James, LLC Koch Methanol Facility KMe Optimization Project: Addendum to Application for a Significant Modification to Title V Permit No. 2560-00295-V4 and an Initial PSD Permit AI No. 194165 Activity Nos. PER20220006 and PER20220007

Dear Sir or Madam:

Koch Methanol St. James, LLC (Koch) operates the Koch Methanol (KMe) Plant and KMe Terminal located in St. James, St. James Parish, Louisiana. The KMe Plant currently operates under Title V Permit No. 2560-00295-V4, and the KMe Terminal currently operates under Title V Permit No. 3169-V3. Koch is submitting this addendum to the pending Application for a Significant Modification to Title V Permit No. 2560-00295-V4 and initial PSD permit submitted to LDEQ on November 2, 2022.

With this addendum, Koch is making various revisions and updates to the November 2022 permit application. An updated Air Quality Impact Assessment (AQIA) and Environmental Assessment Statement (EAS) reflecting these changes will be submitted under separate cover.

Enclosed are the original permit application addendum and two copies, as required by LDEQ; and per LAC 33:III.517.A.2, a copy of the permit application addendum is also being submitted to the United States Environmental Protection Agency, Region 6.

If you or your staff have any questions or require additional information during your review of this addendum or the application in general, please contact Kevan Reardon at (580) 478-7621, kevan.reardon@kochind.com, or Brian Glover at (225) 408-2741, bglover@ramboll.com.

Sincerely, Hoss

VP of Manufacturing & Plant Manager

cc: EPA Region 6 (<u>r6airpermitsla@epa.gov</u>) Anthony Randall (LDEQ) Prepared for Koch Methanol St. James, LLC Koch Methanol Facility (KMe Facility) St. James, St. James Parish, Louisiana

Date February 1, 2023

Prepared by Ramboll US Consulting, Inc.

Agency Interest No. 194165

KME OPTIMIZATION PROJECT: ADDENDUM TO APPLICATION FOR SIGNIFICANT MODIFICATION TO TITLE V PERMIT NO. 2560-00295-V4 AND AN INITIAL PSD PERMIT

CONTENTS

1.	Introduction	1
1.1	Addendum Overview	1
1.2	Facility-Wide Emissions	2
2.	Application Revisions	4
2.1	Emission Rate Reconciliations	4
2.2	Regulatory Applicability Updates	6
3.	BACT Analysis Update	10
3.1	Review for Cooling Water Tower	13
4.	Updated Application For Approval of Emissions of Air Pollutants From Part 70 Sources, Sections 1-25 (as needed)	

TABLES

Table 1-1: Facility-Wide Emission Rate Changes	2
Table 2-1: NSR Applicability Analysis Summary	7
Table 2-2: Facility-wide LTAP Emissions Increases	8
Table 3-1: Summary of BACT Determinations for KMe Facility	10

APPENDICES

Appendix A:	Emissions Calculations
Appendix B:	BACT Analysis Documentation

i

1. INTRODUCTION

1.1 Addendum Overview

Koch Methanol St. James, LLC (Koch) submitted an Application for a Significant Modification to Title V Permit No. 2560-00295-V4 and an initial PSD Permit on November 2, 2022 (November 2022 Application), assigned Activity Numbers PER20220006 and PER20220007, respectively. This submittal provides an addendum to the pending application to incorporate additional information into, and revise certain information contained in, the pending application. An updated Air Quality Impact Assessment (AQIA) and Environmental Assessment Statement (EAS) reflecting the application changes and additional information contained in this addendum will be submitted under separate cover.

With this addendum, Koch is making the following changes to the pending application:

- 1) Adding carbon monoxide (CO) and greenhouse gas (GHG) emissions for the Cooling Water Tower (EPN CWT, EQT 0007);
- Revising average hourly emission rates for the SMR, Boiler, PCS Vent CAP (EPN SMR BLR PCS Vent CAP, GRP 0002);
- 3) Revising average hourly emission rates for the Methanol Transfer and Product Tank Cap (EPN MTPCAP, GRP TBD);
- 4) Revising estimated emissions for the Flare (EPN FLR, EQT 0003);
- 5) Revising emission estimates for all natural gas combustion sources to include hazardous air pollutants (HAPs) and toxic air pollutants (TAPs);
- 6) Revising the PM₁₀/PM_{2.5} maximum hourly emissions for the Admin Building Emergency Generator (EPN EGEN2, EQT 0026);
- 7) Updating New Source Review applicability analysis;
- 8) Updating regulatory analysis for LAC 33:III.Chapter 51;
- 9) Updating BACT analysis for the Cooling Water Tower to address CO and GHG emissions; and,
- 10) Correcting the answer in Section 24.G.a of the Louisiana Application for Approval of Emissions form, NSR Applicability Summary, to indicate "No" because the nearest Class I area is greater than 100 km.

The information included in this application addendum is organized as follows:

<u>Part 1 – Introduction</u> provides an overview of the addendum.

<u>Part 2 – Application Revisions</u> provides a narrative description of changes to the pending application that are being made with this addendum.

<u>Part 3 – BACT Analysis Update</u> includes supplemental information to be included in the BACT analysis for the Cooling Water Tower to address CO and GHG emissions. <u>Part 4 – Updated Application for Approval of Emissions</u> includes updated Sections 1 through 25 of the Louisiana Application for Approval of Emissions of Air Pollutants from Part 70 Sources, as needed.

<u>Appendix A – Emission Calculations</u> includes detailed revised potential to emit calculations for each emissions source for which emissions rates are being revised.

<u>Appendix B – BACT Analysis Documentation</u> includes search results from EPA's RACT/BACT/LAER Clearinghouse to support the BACT analysis for the Cooling Water Tower.

1.2 Facility-Wide Emissions

As mentioned in the initial application submitted November 2, 2022, the permit application proposes consolidating the Koch Methanol (KMe) Plant and the KMe Terminal, collectively known as the KMe Facility, into a single Title V permit. Therefore, Table 1-1 included in the pending application provided a summary of the current KMe Plant (Title V Permit No. 2560-00295-V4) and Terminal (Title V Permit No. 3169-V3) permitted facility-wide criteria pollutant emissions. The table also included the proposed Title V Permit No. 2560-00295-V5 allowable emission rates for the consolidated permit, as well as the resulting changes in facility-wide permitted emissions. An updated Table 1-1 is provided below. The proposed emission rates and change in emissions listed in the updated Table 1-1 account for the revisions included with this application addendum.

Table 1-1:	Table 1-1: Facility-Wide Emission Rate Changes ¹					
Pollutant	Current 2560-00295- V4 Permitted Emission Rate (tpy)	Current 3169-V3 Permitted Emission Rate (tpy)	Proposed Allowable Emission Rate (tpy)	Change in Emissions (tpy)		
СО	92.57	3.96	181.46	+84.93		
NOx	87.29	9.57	154.84	+57.98		
PM10	49.92	0.41	76.28	+25.95		
PM _{2.5}	48.46	0.41	75.30	+26.43		
SO ₂	4.65	0.04	6.11	+1.42		
VOC	63.55	24.81	166.34	+77.98		
¹ The plant facili	ity-wide emission rat	es presented in thi	s table do not acco	unt for emissions		

from General Condition XVII Activities and Insignificant Activities.

Since the KMe Facility is not currently classified as a major source under the PSD regulations (see November 2022 Application Section 4.1), there are no GHG emission limits in the current KMe Plant and Terminal permits. Using the calculation method utilized in the initial November 2022 application, and considering the

changes included with this addendum, the GHG potential to emit (PTE) for the existing KMe Facility would be 980,269 TPY CO_2e . The proposed facility-wide GHG PTE following the Project considering the changes included with this addendum is 1,401,099 TPY CO_2e . Accordingly, the permit application, as revised by this addendum, represents an increase in proposed allowable GHG emissions of 420,830 TPY CO_2e .

2. APPLICATION REVISIONS

2.1 Emission Rate Reconciliations

Koch is making the following changes to the emission rate calculations represented in the pending application. Updated emission calculations and EIQ sheets reflecting these revisions are provided in Appendix A and Part 4, Section 23 of this application addendum, respectively.

2.1.1 Add Estimated CO and GHG Emissions for the Cooling Water Tower (EPN CWT, EQT 0007)

A counterflow Cooling Water Tower is used to evaporate heat from non-contact cooling water streams, with the aid of cooling tower fans to move air for proper heat exchange. The Cooling Water Tower is currently permitted to emit VOC, methanol, PM_{10} , and $PM_{2.5}$ emissions. However, based on current operations, Koch has determined that the Cooling Water Tower also has the potential to emit CO, and GHG (CO₂ and methane).

For exchangers which are regulated under the HON (i.e., contain methanol), the leak quantity of CO (as well as GHG) can be determined based on analyzing cooling water samples of the leaking exchanger for methanol and knowledge of stream content. The CO permit limit that Koch is proposing is based on CO emissions from HON-regulated heat exchangers. The GHG emissions from these same HONregulated heat exchangers will also be considered for determining compliance with the sitewide GHG intensity limit.

Emissions of CO and GHG can also be generated from leaks of heat exchangers that are not HON-regulated; such emissions are not accounted for here due to the inability to quantify those emissions via exchanger monitoring. Therefore, Koch is proposing that the Cooling Water Tower CO emission limit (and the GHG contribution for determining the facility wide GHG intensity limit) apply only to leaks from exchangers subject to the HON.

Based on the discussion above, CO, CO_2 , and methane emissions for the cooling tower are estimated based on a ratio of the anticipated mass fraction for CO, CO_2 , and methane to the mass fraction of VOC and calculated VOC emissions¹ in the methanol-containing streams.

2.1.2 Revise Average Hourly Emission Rates for SMR, Boiler, PCS Vent CAP (EPN SMR BLR PCS Vent CAP, GRP 0002)

The SMR, Boiler, PCS Vent Cap accounts for the average hourly and the annual emissions from the Steam Methane Reformer (EPN SMR, EQT 0001), Auxiliary

¹ VOC emissions calculated based on the emission factor for controlled emissions from cooling towers, AP-42 Chapter 5.1, Table 5.1-3 "Fugitive Emission Factors for Petroleum Refineries."

Boiler (EPN BLR, EQT 0002), and Process Condensate Stripper Vent (EPN PCSVENT, RLP 0024). In the pending application, average hourly emission rates for all of the pollutants were estimated based on operations of 8,784 hours per year, which is based on the number of hours in a leap year. With this addendum, Koch is reconciling the average hourly emission rates based on 8,760 hours per year of operation. The annual emission rates are unchanged as a result of this revision.

2.1.3 Revise Average Hourly Emission Rates for Methanol Transfer and Product Cap (EPN MTPCAP, GRP 0001)

The Methanol Transfer and Product Tank Cap, which is currently permitted under the KMe Terminal Title V permit as GRP 0001, accounts for the average hourly and the annual emissions from the four (4) internal floating roof methanol product tanks (EPNs TK-26-202A, TK-26-202B, TK-26-202C, and TK-26-202D), including tank cleanings and tank landings, as well as emissions from truck and railcar loading operations (EPN RT LOAD). With this addendum, Koch is revising the average hourly emission rates for the MTPCAP to be based on the annual emission rates and 8,760 hours per year of operation. The annual emission rates are unchanged as a result of this revision.

2.1.4 Revise Estimated Emissions for the Flare (EPN FLR, EQT 0003)

With this addendum, the Flare emission calculations have been revised as follows: nitrogen oxides $(NOx)^2$ and pilot gas CO_2e emissions have been revised to reflect the heat input based on high heating value (HHV); sulfur dioxide (SO₂), VOC and methanol emissions associated with routine flaring have been revised; and the calculation basis for particulate matter (PM₁₀/PM_{2.5}), VOC and methanol emissions resulting from process shutdowns has been revised.

2.1.5 Update Estimated Emissions for all Natural Gas Combustion Sources to Include Hazardous and Toxic Air Pollutants

Based on recent LDEQ guidance for estimating HAP and TAP emissions from combustion sources³, the PTE emissions calculations have been reviewed and updated to speciate additional HAPs and TAPs for each combustion source. Currently permitted emissions for the Steam Methane Reformer (EPN SMR, EQT 0001), Boiler (EPN BLR, EQT 0002), Methanol Railcar and Tank Truck Loading Operations (EPN RT LOAD, EQT TBD), and Methanol Transfer and Product Tank Cap (EPN MTPCAP, GRP TBD) include speciated organic HAPs and TAPs. Koch is proposing to update the PTE emissions for those sources to include inorganic HAP and TAP speciation. Additionally, the Flare and Portable Thermal Oxidizer (GCXVII-15) PTE emissions are being updated to include speciated organic and inorganic

 $^{^2}$ EPA AP-42 Section 13.5 Industrial Flares (02/2018) Table 13.5-1, footnote k.

³ Letter from Bliss Higgins, Assistant Secretary, Louisiana Department of Environmental Quality to Robert Berg, Interim Regulatory Affairs Manager, Louisiana Mid-Continent Oil & Gas Association, October 20, 2022.

HAPs and TAPs. The calculation methodology for speciated HAPs and TAPs for these sources utilizes emission factors from AP-42 Section 1.4, "Natural Gas Combustion".

2.1.6 Admin Building Emergency Generator (EPN EGEN2, EQT 0026)

The Admin Building Emergency Generator maximum lb/hr emission calculations have been updated to reflect the inclusion of condensable $PM_{10}/PM_{2.5}$ emissions. There is no change to the permitted annual rates due to rounding.

2.2 Regulatory Applicability Updates

2.2.1 Prevention of Significant Deterioration (40 CFR Part 52 and LAC 33:III.509)

Prevention of Significant Deterioration (PSD) applicability for the proposed permitting action was discussed in the November 2022 Application and it was determined that PSD does not apply because the KMe Facility is not an existing major source and the changes proposed with the initial application did not themselves constitute construction of a new major stationary source. While Koch is proposing revisions to some of the emissions calculations contained in the initial application, emissions increases of non-GHG PSD-regulated pollutants remain less than 100 tons per year. Therefore, the initial determinations that the proposed changes do not themselves constitute construction of a new major stationary source and that PSD does not apply to this permitting action are not impacted by the revisions reflected in this addendum.

Although PSD does not apply, PSD requirements have been voluntarily and conservatively applied as if the KMe Facility has not yet been built and to all pollutants for which the post-Project facility-wide PTE will exceed the PSD Significant Emissions Rate (SER), including NOx, CO, VOC, PM, PM_{2.5}, PM₁₀, and GHG. Due to the revision of several emission rates, as proposed with this addendum, the PSD applicability analysis submitted in the November 2022 Application has been revised, as reflected in updated Table 2-1 below. The PTE calculations (tpy) for each source with revised emission rates as part of this Addendum is included in Appendix A.

Table 2-1: N	Table 2-1: NSR Applicability Analysis Summary								
Description	NOx	со	voc	РМ	PM 10	PM2.5	H₂S	SO ₂	GHG (CO ₂ e) ⁽²⁾
Site PTE (tpy) ⁽¹⁾	155.79	183.08	174.88	76.76	76.38	75.40	9.13	6.18	1,401,099
NSR Significant Emissions Rate (SER) (tpy)	40	100	40	25	15	10	10	40	75,000
Is Site PTE > SER?	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes
PSD Review Performed?	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes

Notes:

⁽¹⁾ Site PTE: For the purposes of this voluntary PSD review, the facility was assessed as if the facility had not yet been built; therefore, the total site emissions, including emissions from GC XVII Activities and Insignificant Activities, are compared to the SER.

 $^{(2)}$ Because Koch is taking on voluntary PSD review for other regulated pollutants and the site PTE of CO₂ equivalent (CO₂e) is greater than the SER for GHGs, the voluntary PSD review includes a BACT analysis for GHGs.

2.2.2 LAC 33:III.Chapter 51 – Comprehensive Toxic Air Pollutant Emission Control Program

The KMe Facility is major source of Louisiana Toxic Air Pollutants (LTAPs) as defined under LAC 33:III.Chapter 51. The Louisiana Air Toxics Program requires a major source emitting any Class I or II pollutant at a rate that equals or exceeds the minimum emission rate (MER) for that pollutant to demonstrate compliance with the Maximum Achievable Control Technology (MACT) standards in accordance with LAC 33:III.5109. Additionally, the Louisiana Air Toxics Program requires a major source emitting any Class I, II, or III toxic air pollutant greater than the MER for that pollutant to ensure compliance with the applicable ambient air standards (AAS) pursuant to LAC 33:III.5109.B. This regulation also requires owners or operators to submit an annual emissions report of the LTAPs as well as applicable air toxics permit application fees and annual fees.

LAC 33:III.5101.D provides that any affected source that is subject to a NESHAP in 40 CFR Part 61 or 63 is not subject to the requirements of Chapter 51 with the exceptions of annual emissions reporting, AAS requirements, applicable air toxics permit application fees, and air toxics annual fees. However, as provided in LAC

33:III.5101.D.2, if an affected source emits an LTAP not listed in section 112(b) of the Clean Air Act above the MER for that pollutant listed in LAC 33:III.5112, Table 51.1, the affected source is subject to the requirements of Chapter 51 for that pollutant.

Table 2-2 presents the facility-wide LTAP emissions increases proposed in the Koch November 2022 Application as revised with this addendum.

LTAP	Emissions (tp		MER	Above	Class I, II,
	(tons/yr)	(lb/yr)	(lb/yr)	MER?	III?
Arsenic	0.001	2	25	No	Class I
Benzene	0.003	6	260	No	Class I
Cadmium	0.011	22	25	No	Class I
Chromium	0.015	30	25	Yes	Class I
Formaldehyde	0.29	580	260	Yes	Class I
Nickel	0.021	42	25	Yes	Class I
Acetaldehyde	No emissior	ns increases	700	N/A	Class II
1,4- Dichlorobenzene	No emissior	ns increases	20,000	N/A	Class II
Barium	0.045	90	37.5	Yes	Class II
Cobalt ¹	0.01	20	N/A	N/A	Class II
Copper	0.008	16	25	No	Class II
Ethylbenzene	No emissior	ns increases	20,000	N/A	Class II
Manganese	0.01	20	75	No	Class II
Mercury	0.003	6	25	No	Class II
Naphthalene	No emissior	ns increases	1,990	N/A	Class II
Ammonia	19.27	38,540	1,200	Yes	Class III
Hexane (-n)	6.62	13,240	13,000	Yes	Class III
Hydrogen sulfide	No emissior	ns increases	1,000	N/A	Class III
Methanol	73.22	146,440	20,000	Yes	Class III
Sulfuric acid	0.037	74	75	No	Class III
Toluene	0.01	20	20,000	No	Class III
2,2,4- Trimethylpentane ¹	No emissior	ns increases	N/A	N/A	Class III
Zinc	0.31	620	200	Yes	Class III

¹ 2,2,4-Trimethylpentane and cobalt are listed as a supplemental LTAP per LAC 33:III.5112, Table 51.3 and, therefore, have not been assigned a minimum emission rate.

As previously discussed in the November 2022 Application, the KMe Facility, and the facility's associated emissions sources, are part of an affected source under 40 CFR 63, Subparts F, G, and H, which regulates synthetic organic chemical manufacturing industry (SOCMI) process units. Methanol and hexane are listed in section 112(b) of the Clean Air Act and regulated as SOCMI chemicals according to 40 CFR Part 63, Subpart F, Table 1. As a result, only the annual emissions reporting, AAS requirements, applicable air toxics permit application fees, and air toxics annual emissions fees apply to the KMe Facility. In addition, the facility emits LTAPs not listed in section 112(b) of the Clean Air Act above the MER, specifically ammonia and hydrogen sulfide. Because ammonia and hydrogen sulfide are Class III LTAPs under Chapter 51, AAS requirements under LAC 33:III.5109.B as well as the standard operating procedures of LAC 33:III.5109.C apply to sources that emit ammonia and hydrogen sulfide.

Finally, LTAP emissions from all sources combusting a Group 1 virgin fossil fuel, including natural gas and diesel, at the KMe Facility are exempt from the requirements of Chapter 51 per LAC 33:III.5105.B.3.a. Chromium, formaldehyde, nickel, barium, hexane and zinc emissions increases exceed their MER; however, all or a portion of these emissions are a result of Group 1 virgin fossil fuels combustion. The non-exempt emission increases of these compounds are less than the MER and thus are exempt from the requirements of Chapter 51.

3. BACT ANALYSIS UPDATE

As previously discussed, while not required under LDEQ's PSD regulations, PSD requirements were voluntarily and conservatively applied for all emissions units that emit pollutants the KMe Facility will have the potential to emit in a significant amount following the proposed Project (i.e., NOx, CO, VOC, PM, PM₁₀, PM_{2.5}, and GHGs). Accordingly, a BACT analysis for all KMe Facility emission sources emitting these pollutants was included in the November 2022 Application. This addendum includes an update to the Cooling Water Tower (EPN CWT, EQT 0007) BACT analysis that addresses CO and GHG (expressed as CO₂e) emissions emitted from the Cooling Water Tower. Note that an overview of the BACT process, including discussion of the "Top-Down" BACT process and information relied upon for the review, was included in the November 2022 Application and is not reiterated in this section. An updated summary table of BACT determinations for the KMe Facility is included below in Table 3-1, which presents the BACT determinations made for NOx, CO, PM, PM₁₀, PM_{2.5}, VOC, and GHGs for the KMe Facility emissions units subject to BACT. For simplicity, for gas-fired combustion sources, PM is equivalent to PM₁₀/PM_{2.5}, and is not referenced separately. For ease of reference, the emission units have been grouped by emission unit type and plant area.

Table 3-1: Su	Table 3-1: Summary of BACT Determinations for KMe Facility					
Emissions Unit/ Description	TEMPO ID	EPN	Pollutant	Control Technology or Work Practice	Emissions Level	Averaging Period
Facility-wide	UNF 0001	N/A	CO2e (GHG)	Energy Efficiency measures including gaseous, low carbon fuels	0.56 MT CO ₂ e/MT MeOH at rates above 5100 MT MeOH Production/day; 0.68 MT CO ₂ e/MT MeOH at rates below 5100 MT MeOH/day	365-day rolling average
			NOx	Selective Catalytic Reduction	0.01 lb/MMBtu	12-month rolling average
Steam	FOT 0001	SMR	CO	Catalytic Oxidation	0.0037 lb/MMBtu	12-month rolling average
Methane Reformer	EQT 0001	אויוכ	PM ₁₀ /PM _{2.5}	Good Combustion Practices	0.00745 lb/MMBtu	3-hour average
			VOC	Good Combustion Practices	0.00374 lb/MMBtu	3-hour average

Table 3-1: Su	Table 3-1: Summary of BACT Determinations for KMe Facility					
Emissions Unit/ Description	TEMPO ID	EPN	Pollutant	Control Technology or Work Practice	Emissions Level	Averaging Period
			NOx	Selective Catalytic Reduction	0.01 lb/MMBtu	12-month rolling average
Auxiliary	EQT 0002	BLR	СО	Good Combustion Practices	0.0046 lb/MMBtu	12-month rolling average
Boiler		DLK	PM ₁₀ /PM _{2.5}	Good Combustion Practices	0.00745 lb/MMBtu	3-hour average
			VOC	Good Combustion Practices	0.0016 lb/MMBtu	3-hour average
			NOx			
			CO	Flare that complies with		
Process Vents	EQT 0003	FLR	PM10/PM2.5	40 CFR 60.18 and 40 CFR	N/A	N/A
			VOC	63.11		
			CO ₂ e			
Methanol Railcar and Tank Truck Loading Operations	EQT TBD	RT LOAD	VOC	Routing Displaced Vapors to a Vapor Control Unit	18.54 lb/hr	3-hour average
Wastewater Treatment	FUG 0002	WWT	VOC	Good Air Pollution Control Practices and Compliance with 40 CFR 63, Subpart G	N/A	N/A

Table 3-1: Su	mmary of B	ACT Determin	ations for KMe	Facility		
Emissions Unit/ Description	TEMPO ID	EPN	Pollutant	Control Technology or Work Practice	Emissions Level	Averaging Period
Fugitive Component	FUG 0001	FUG	VOC	Equipment Design and LDAR Program via 40 CFR 60, Subpart VVa and 40 CFR, 63 Subpart H	N/A	N/A
Emissions	100 0001	100	со	Equipment Design and CO LDAR Program	N/A	N/A
			CO2e	Equipment Design and Methane LDAR Program	N/A	N/A
		EGEN,	NOx	Compliance	N/A	
Emergency Generator	EQTs 0004,		CO			
Engine, Three Firewater Pump Engines,	0005, 0006, 0022,	FWP-01, FWP-02, FWP-03,	PM10/PM2.5	with 40 CFR 60, Subpart IIII for all		N/A
and Two Generac SD	TBD, TBD	E.GEN 01, E.GEN 02	VOC	Engines		
2000 Engines			CO2e			
			NOx			
Admin			СО	Compliance		
Building Emergency	EQT 0026	EGEN2	PM ₁₀ /PM _{2.5}	with 40 CFR 60, Subpart JJJJ	N/A	N/A
Generator		VOC				
			CO ₂ e			

Table 3-1: Su	mmary of B	ACT Determin	nations for KMe	Facility		
Emissions Unit/ Description	TEMPO ID	EPN	Pollutant	Control Technology or Work Practice	Emissions Level	Averaging Period
			СО	Monitoring and Repair in		
Cooling Water	FOT 0007	CNAT	VOC	accordance with 40 CFR		NI (A
Tower	EQT 0007	CWT	CO ₂ e	63, Subpart F	N/A	N/A
			PM/PM ₁₀ /PM _{2.5}	Use of Drift Eliminators with 0.0005% Drift		
Methanol Plant Storage Tanks	EQTs 0008, 0013, 0017	TK-04001, TK-04002A, TK-04002B	VOC	Fixed Roof Tank with Vapor Collection System and Scrubber with 98% Efficiency	10.07 TPY	12-month rolling average
Methanol Slop Vessel	EQT 0018	F-03007	VOC	Fixed Roof Tank with Vapor Collection System and a Flare meeting 40 CFR 60.18 and 40 CFR 63.11	N/A	N/A
Gasoline Tank	EQT 0027	GASTANK	VOC	Fixed Roof with Submerged Fill	N/A	N/A
Process Condensate Stripper Vent & Condensate Trap Vents	RLP 0024, RLP0025	PCSVENT, CTVENT	со	Minimizing vent operation	N/A	N/A
Terminal Tanks	EQTs TBD	TK-26-202A, TK-26-202B, TK-26-202C, TK-26-202D	VOC	Internal Floating Roof and compliance with 40 CFR Subpart G	N/A	N/A

3.1 Review for Cooling Water Tower

The KMe Facility includes a direct contact wet Cooling Water Tower (EPN CWT, EQT 0007). Potential emissions for $PM/PM_{10}/PM_{2.5}$ and VOC were discussed and evaluated as part of BACT analysis included in Section 4.11 of the November 2022 Application. Based on current operations, and as discussed in Section 2.11 of this addendum, Koch has quantified the potential to emit of CO and GHG leaks from

Hazardous Organic NESHAP (HON) regulated heat exchanger systems. Note, the cooling tower is subject to the HON (40 CFR Part 63, Subpart F).

CO and GHG BACT Review

3.1.1 Step 1 – Identify Control Technologies

The following are available CO and GHG emission control technologies for the cooling water tower.

- 1. Direct Contact design with Exchanger Monitoring and Repair
- 2. Indirect Contact Tower Exchangers
- 3. Dry Cooling Tower Design

Below these technologies are generally described.

3.1.1.1 Direct Contact Design with Exchanger Monitoring and Repair

An effective measure to reduce releases of emissions from cooling towers is to institute a monitoring program for water-cooled heat exchangers.

Emissions from direct contact design cooling towers may occur when heat exchangers leak into cooling tower recirculating water. Water from direct contact cooling towers is circulated through heat exchangers throughout the plant to cool process streams. When a leak occurs in a shell and tube heat exchanger, and the process stream operates at a higher pressure than the cooling water stream pressure, the process stream contents are exposed to the circulating water and eventually contaminate the recirculating water stream. As the contaminated water enters the cooling tower, the contaminants in the process stream may be emitted into the atmosphere.

To reduce the possibility of hydrocarbon emissions, the inlet and outlet of a cooling tower or heat exchangers can be sampled and analyzed to determine if a leak is present. Logs can be kept and maintained on site. For instance, HON (40 CFR Part 63, Subpart F) requires cooling tower/heat exchanger monitoring to minimize HAP emissions. For streams containing a mixture of hydrocarbon and other contaminants, such as CO and GHG, the hydrocarbon sample results can be used to indicate presence of a leak not just of hydrocarbons, but also of CO or GHG, since CO and GHG are not directly measured. In such cases, the monitoring program can be utilized to minimize CO and GHG emissions, as well as hydrocarbons.

3.1.1.2 Indirect Contact Tower Exchangers

An indirect contact heat exchanger can be considered 100% effective. The process water that could contain CO and GHG is not exposed to the atmosphere in the type of tower.

3.1.1.3 Dry Cooling Tower Design

For control of CO and GHG emissions, a dry cooling tower can be considered 100% effective.

3.1.2 Step 2 – Eliminate Technically Infeasible Options

3.1.2.1 Indirect contact tower exchangers

RBLC data indicates only a couple of instances of nondirect/indirect contact tower exchangers that are used in the chemical process industry for this technology. As noted in the PM BACT Review discussion for cooling towers in the November 2022 Application, indirect contact tower exchangers may also increase PM_{10} emissions from drift aerosols. Therefore, the use of indirect contact tower exchangers is eliminated from further evaluation.

3.1.2.2 Dry cooling tower design

The dry cooling tower design option is only technically feasible for use during cooler months because the ambient dry bulb temperature must be below the required cooling water supply temperature. A dry cooling tower could not be used for 4 to 6 months of the year in this location as its use is limited to when ambient temperature is below 75°F. Thus, dry cooling tower design is eliminated since not technically feasible in this location.

3.1.3 Steps 3 – Rank Remaining Control Technologies by Control Effectiveness, 4 – Evaluate Most Effective Control Options and Document Results, and 5 – Selection of CO and GHG BACT for the Cooling Water Tower

The only remaining technically feasible CO and GHG emission control technology for the Cooling Water Tower is Direct Contact Design with Exchanger Monitoring and Repair. Koch has determined that Direct Contact Design with Exchanger Monitoring and Repair in accordance with HON (40 CFR Part 63, Subpart F) is BACT for CO and GHG.

4. UPDATED APPLICATION FOR APPROVAL OF EMISSIONS OF AIR POLLUTANTS FROM PART 70 SOURCES, SECTIONS 1-25 (AS NEEDED)

10. Certification of Compliance With Applicable Requirements

Statement for Applicable Requirements for Which the Company and Facility Referenced In This Application Is In Compliance

Based on information and belief, formed after reasonable inquiry, and except as provided in Note 1 below, the company and facility referenced in this application is in compliance with and will continue to comply with all applicable requirements pertaining to the sources covered by the permit application, as outlined in Tables 1 and 2 in the permit application. For requirements promulgated as of the date of this certification with compliance dates effective during the permit term, I further certify that the company and facility referenced in this application will comply with such requirements on a timely basis and will continue to comply with such requirements.

[Note 1: This certification excludes any ongoing deviations that have been identified since the close of the last deviation reporting period (September 30, 2022) and that will be included in the next deviation report to be submitted to LDEQ by March 31, 2023.]

For corporations only: By signing this form, I certify that, in accordance with the definition of Responsible Official found in LAC 33:III.502, (1) I am a president, secretary, treasurer, or vice-president in charge of a principal business function, or other person who performs similar policy or decision-making functions; or (2) I am a duly authorized representative of such person; am responsible for the overall operation of one or more manufacturing, production, or operating facilities addressed in this permit application; and either the facilities employ more than 250 persons or have gross annual sales or expenditures exceeding \$25 million (in second quarter 1980 dollars); or the delegation of authority has been approved by LDEQ prior to this certification.*

CERTIFICATION: I certify, under provisions in Louisiana and United States law which provide criminal penalties for false statements, that based on information and belief formed after reasonable inquiry, the statements and information contained in this Application for Approval of Emissions of Air Pollutants from Part 70 Sources, including all attachments thereto and the compliance statement above, are true, accurate, and complete.

a. Responsible Official		
Name		
Marc Hoss		
Title		
VP of Manufacturing & Plant Manager	•	
Company		
Koch Methanol St. James, LLC		
Suite, mail drop, or division		
Street or P.O. Box		
5181 Wildcat Street		
City	State	Zip
St. James	LA	70086
Business phone		
(580) 215-7907		
Email Address		
marc.hoss@kochind.com		
Signature of responsible official (See	40 CFR '	70.2):
Marc Hoss		
Marc Hors Date: 2-1-2023		

* Approval of a delegation of authority can be requested by completing a Duly Authorized Representative Designation Form (Form_7218) available on LDEQ's website at http://www.deq.louisiana.gov/portal/tabid/2758/Default.aspx

10. Certification by a Professional Engineer

CERTIFICATION: I certify that the engineering calculations, drawings, and design are true and accurate to the best of my knowledge.

b. Professional Engineer		
Name		
Carolee Laffoon, PE		
Title		
Principal Consultant		
Company		
Ramboll US Consulting, Inc.		
Suite, mail drop, or division		
Suite 300		
Street or P.O. Box		
8235 YMCA Plaza Drive		
City	State	Zip
Baton Rouge	LA	70810
Business phone		
(225) 408-2692		
Email Address		
claffoon@ramboll.com		
Signature of Professional Enginee	r:	Contraction of the second
Carolee Left	Torest	STATE OF
Date: January 26,	2 BH	BON LAC
Louisiana Registration No.	29623	IN ENGINE
	Sun Su	GINEERING

12. Proposed Project Emissions [LAC 33:III.517.D.3]

List the total emissions following the proposed project for this facility or process unit (for process unit-specific permits). Speciate all criteria pollutants, TAP, and HAP for the proposed project.

Pollutant	Proposed Emission Rate (tons/yr)
CARBON MONOXIDE	181.46
NITROGEN OXIDES	154.84
PM10	76.28
PM2.5	75.30
SULFUR DIOXIDE	6.11
TOTAL VOC (INCL. LISTED)	166.34
1,4-DICHLOROBENZENE	0.01
2,2,4-TRIMETHYLPENTANE	< 0.01
ACETALDEHYDE	< 0.01
BENZENE	0.03
ETHYLBENZENE	< 0.01
FORMALDEHYDE	0.48
HEXANE (-N)	11.31
METHANOL	140.72
NAPHTHALENE	0.01
TOLUENE	0.02
AMMONIA	120.49
ARSENIC (AND COMPOUNDS)	0.001
BARIUM (AND COMPOUNDS)	0.045
CADMIUM (AND COMPOUNDS)	0.011
CHROMIUM VI (AND COMPOUNDS)	0.015
COBALT COMPOUNDS	< 0.01
COPPER (AND COMPOUNDS)	0.008
HYDROGEN SULFIDE	9.13
MANGANESE (AND COMPOUNDS)	< 0.01
MERCURY (AND COMPOUNDS)	0.003
NICKEL (AND COMPOUNDS)	0.021
ZINC (AND COMPOUNDS)	0.29

Comment: Emissions from GC XVII Activities and Insignificant Activities are not inlcuded in the above table.

19. General Condition XVII Activities- Ves 🗌 No

Enter all activities that qualify as Louisiana Air Emissions Permit General Condition XVII Activities.

- Expand this table as necessary to include all such activities.
- See instructions to determine what qualifies as a General Condition XVII Activity.
- Do not include emissions from General Condition XVII Activities in the proposed emissions totals for the permit application.

					Emission	Rates - TPY	Y
Work Activity	Schedule	PM10/2.5	SO2	NOx	CO	VOC	Other
[GCXVII-1] Plant Control Device Inspections	2 events/year					< 0.01	
[GCXVII-2] Plant Control Device Service	8 events/year					0.04	
[GCXVII-3] Plant Equipment Cleaning	100 events/year				0.60	0.60	
[GCXVII-4] Plant Valve Maintenance	20 events/year				< 0.01	< 0.01	
[GCXVII-5] Plant Compressor Maintenance	3 events/year				0.01	0.01	
[GCXVII-6] Plant Filter and Strainer Changeouts	50 events/year				0.03	0.03	
[GCXVII-7] Plant Pump Maintenance	50 events/year				0.05	0.05	
[GCXVII-8] Plant Instrument Maintenance	300 events/year				0.04	0.04	
[GCXVII-9] Plant Catalyst Handling Operations	10 events/year	< 0.01				0.04	
[GCXVII-10] Plant Sampling	8000 events/year					0.06	
[GCXVII-11] Plant Tank Inspections	9 events/year					0.01	
[GCXVII-12] Plant Piping & Heat Exchanger Draining	20 events/year				0.10	0.10	
[GCXVII-13] Plant Sump Solids Removal	52 events/year					0.22	
[GCXVII-14] Plant Tank Cleaning	3 events/year					0.13	
[GCXVII-15] Plant Portable Thermal Oxidizer	7 events/year	0.01	< 0.01	0.18	0.15	0.01	N-HEXANE: 0.003
[GCXVII-16] Plant Miscellaneous Painting	1 event/year					2.13	
[GCXVII-17] Plant Frac Tanks	35					0.07	
[GCXVII-18] Plant Sulfuric Acid Tanks	Daily						SULFURIC ACID: 0.04

					Emission	Rates - TH	Ϋ́
Work Activity	Schedule	PM10/2.5	SO2	NOx	СО	VOC	Other
[GCXVII-19] Terminal Control Device Inspections	4 events/year					< 0.01	
[GCXVII-20] Terminal Control Device Service	12 events/year					0.06	
[GCXVII-21] Terminal Equipment Cleaning	5 events/year					0.03	
[GCXVII-22] Terminal Valve Maintenance	5 events/year					< 0.01	
[GCXVII-23] Terminal Filter and Strainer Changeouts	365 events/year					0.22	
[GCXVII-24] Terminal Pump Maintenance	24 events/year					0.02	
[GCXVII-25] Terminal Instrument Maintenance	1 event/year					< 0.01	
[GCXVII-26] Terminal Sampling	100 events/year					< 0.01	
[GCXVII-27] Terminal Tank Inspections	4 events/year					< 0.01	
[GCXVII-28] Terminal Line Preparation	2 events/year					0.01	
[GCXVII-29] Terminal Sump Solids Removal	4 events/year					0.02	
[GCXVII-30] Terminal Miscellaneous Painting	1 event/year					2.13	
[GCXVII-31] Terminal Railcar Cleanings	75 cars/year					2.43	

		Emission	is Invento		f Louisia ionaire (l	na EIQ) for Air Po	ollutants]		f Subm bruar	ittal y 2023	3
	Emission Point ID No. (Alternate ID)	Descr	iptive Name o	f the Emission	s Source (Alt	t. Name)		Appr	oximate Location	of Stack or Ven	t (see in	istruct	tions)		
SM	R BLR PCS Vent CAP	SMR, Boiler, I	PCS Vent C	AP			Method					Da	tum		
Те	mpo Subject Item ID No.						UTM Zone	15	5Horizontal	m	E Ver	rtical			mN
	GRP 0002						Latitude		o	'	"	-		hund	lredths
							Longitude		0		"	-		hund	lredths
Physic	8	ter (ft) or Stack harge Area (ft ²)	Height of S Above grad		k Gas Exit Velocity	Stack Gas Flow at Conditions, not at Standard (ft ³ /min)	Stack Gas Tempera (°F	ature	Normal Operati Time (hours po year)	8	n or 1	Thoug	hput T	f Annu hrougl n Poin	h This
		ft						,	• /			Jan-	Apr-	Jul-	Oct-
	No	ft ²		ft	ft/sec	ft^3/mi	n	۴	hr	/yr		Mar 25	Jun 25	Sep 25	Dec 25
	Type of Fuel	l Used and Heat In	put (see instru	ictions)				0	perating Parame	ters (include uni	ts)				
Fuel	Type of F	uel	Heat II	nput (MMBTU	J /hr)				I	arameter		Γ	Descrip	tion	
						Normal Operat	C	01							
						Maximum Ope	e	U	put						
		Notes				Design Capaci Displacement	ty/Volume/Cy	ylınder							
This Ca	p includes emissions from	the following so	ources: Stear	n Methane l	Reformer	Shell Height (f	t)								
	MR, EQT 0001), Auxiliary			002), and the	e Process	Tank Diameter	,								
Conder	sate Stripper Vent (EPN P	CSVENT, RLP	0024).			Tanks:	Fixed Ro	of	Floating Roof	Externa	ıl		Inte	rnal	
						Date Engine O				Engine Model Y	ear				
						Date Engine W									
						SI Engines:		Rich Bı	ırn 🗌 Lea	n Burn	2 Strok	e		4 Stro	oke
Air Po	llutant Specific Informati	ion													
	ision Point ID No. (Alternate ID IR BLR PCS Vent CAP)) Control Equipment Code	Control Equipment Efficiency	HAP/TAP CAS Numbe	er	Proposed Emission I	Rates	Em	(Current) Ch	dd, ange, ete, or Method	iance			ion of g at stac	0
	Pollutant				Averag	0	Annual (tons/yr)		Annual Unc	hanged					

		(lbs/hr)	(lbs/hr)	(tons/yr)	(tons/yr)		
CARBON MONOXIDE		9.25		40.51	10.22	Change	
NITROGEN OXIDES		22.50		98.56	69.75	Change	
PM10		16.76		73.42	46.96	Change	
PM2.5		16.76		73.42	46.96	Change	
SULFUR DIOXIDE		1.35		5.91	4.53	Change	
TOTAL VOC (INCL. LISTED)		7.30		31.99	11.56	Change	
1,4-DICHLOROBENZENE	106-46-7	0.002		0.01	< 0.01	Change	
BENZENE	71-43-2	0.003		0.01	< 0.01	Change	
FORMALDEHYDE	50-00-0	0.10		0.44	0.18	Change	

					State of	Louisia								Date c	of Subm	ittal		
			Emission	s Invento	ry Questi	onaire (EIQ)	for Air P	ollutants						Fe	ebruar	y 202	3
	Emission Point ID N (Alternate ID)	0.	Descr	iptive Name o	f the Emissions	Source (Al	lt. Name	e)		Appr	oximate Lo	cation of S	Stack o	r Vent (see	instruc	tions)		
SM	R BLR PCS Vent	CAP SN	IR, Boiler, I	PCS Vent C	AP				Method						Da	itum		
Te	empo Subject Item ID) No.							UTM Zone	15	Horizo	ntal		mE V	rtical			mN
	GRP 0002								Latitude		0		,				hund	lredths
									Longitude		0		,				hund	lredths
Physic	k and Discharge cal Characteristics ange? (yes or no)	Diameter (f Discharge	t) or Stack Area (ft ²)	Height of S Above gra		Gas Exit elocity	Con	k Gas Flow at ditions, not at dard (ft ³ /min)	Stack Gas Tempera (°F)	ture	Normal O Time (ho yea	urs per	Const	ate of ruction or lification	Thoug	rcent o shput T Emissio	hroug	h This
			ft												Jan- Mar	Apr-	Jul- Sep	Oct- Dec
	No		ft ²		ft	ft/sec		ft^3/mi	n	°F		hr/yr			25	Jun 25	25	25
	Т	ype of Fuel Use	d and Heat In	put (see instru	ictions)				l	0	perating Pa	rameters	(includ	e units)				<u></u>
Fuel		Type of Fuel		Heat I	nput (MMBTU	/hr)						Para	meter	,]	Descrip	tion	
								Normal Opera	-	• •								
								Maximum Op	•		put							
			Notes				-	Design Capaci Displacement	ity/Volume/Cy	linder								
This Ca	ap includes emissi	ons from the	following so	ources: Steam	n Methane R	leformer		Shell Height (1	ft)									
	SMR, EQT 0001),				002), and the	Process		Tank Diamete										
Conder	nsate Stripper Ven	t (EPN PCSV	ENT, RLP	0024).				Tanks:	Fixed Ro	of	Floating	g Roof	E	xternal		Inte	ernal	
						Date Engine C				Eng	gine Mo	odel Year						
								Date Engine V									. ~	
							1	SI Engines:		Rich Bu	ırn	Lean Bu	urn	2 Str	oke		4 Stro	oke
	ollutant Specific I		C ()		II A D/T A D						• 1							
	nision Point ID No. (A AR BLR PCS Ven	,	Control Equipment Code	Control Equipment Efficiency	HAP/TAP CAS Number			osed Emission l	1	Em (ermitted ission Rate Current)	Add, Change Delete,	e, C or	Continuous Compliance Method	Con	centrat exiting		0
	Pollutant		1	1	1	Avera	σo	May	Annual	1	Annual	Unchang	σed		1			

						Delete, of	Method	exiting at stack
Pollutant		Average (lbs/hr)	Max (lbs/hr)	Annual (tons/yr)	Annual (tons/yr)	Unchanged	Method	
	 1	1	T	T				
HEXANE (-N)	110-54-3	2.39		10.47	4.44	Change		
METHANOL	67-56-1	4.38		19.20	1.69	Change		
NAPHTHALENE	91-20-3	0.002		0.01	< 0.01	Change		
TOLUENE	108-88-3	0.01		0.02	0.01	Change		
AMMONIA	7664-41-7	26.40		115.63	96.79	Change		
ARSENIC (AND COMPOUNDS)	7440-38-2	0.001		0.001		Add		
BARIUM (AND COMPOUNDS)	7440-39-3	0.010		0.043		Add		
CADMIUM (AND COMPOUNDS)	7440-43-9	0.003		0.011		Add		
CHROMIUM VI (AND COMPOUNDS)	7440-47-3	0.004		0.014		Add		

		Emissio	ns Invento	State of ory Question) for Air Po	ollutants						of Subn ebruar		3
	Emission Point ID No. (Alternate ID)	Desc	riptive Name o	f the Emissions	Source (Alt	t. Nam	ie)		Appr	oximate Lo	cation of	Stack or Vent (s	ee instru	ctions)		
SM	R BLR PCS Vent CAP	SMR, Boiler,	PCS Vent C.	AP				Method					D	atum _		
Те	empo Subject Item ID No.	-						UTM Zone	15	5_ Horizo	ntal	mE	Vertica	1		mN
	GRP 0002							Latitude		0		·	"		hunc	dredths
								Longitude		0			"		hunc	dredths
Physic	8	ter (ft) or Stack narge Area (ft ²)	Height of S Above gra		Gas Exit elocity	Cor	ck Gas Flow at iditions, not at idard (ft ^{3/} min)	Stack Gas Tempera (°F)	ature	Normal O Time (ho yea	urs per	Date of Construction of Modification	r Thou	ercent o ghput 7 Emissio	hroug	h This
		ft											Jan-	Apr-	Jul-	
	No	ft ²	ft/sec		ft^3/mir	n	°F		hr/yr		Mar 25	Jun 25	Sep 25	Dec 25		
	Type of Fue	l Used and Heat I	nput (see instru	uctions)					0	perating Pa	rameters	(include units)				
Fuel	Type of I	Tuel	Heat I	nput (MMBTU/	/hr)						Para	meter		Descri	otion	
							Normal Operat	-								
							Maximum Ope	e	0	put						
		Notes					Design Capacit Displacement	ty/Volume/Cy	linder							
	ap includes emissions from						Shell Height (f	t)								
	SMR, EQT 0001), Auxiliar			002), and the	Process		Tank Diameter	(ft)								
Conder	nsate Stripper Vent (EPN P	CSVENT, RLP	0024).				Tanks:	Fixed Ro	of	Floating		External		Int	ernal	
							Date Engine O				En	gine Model Year				
							Date Engine W		lanufac Rich Bı		Lean Bu		troke		4 Str	- 1
							SI Engines:		KICH BI	lm 🗌	Lean Bu		troke		4 Str	оке
	ollutant Specific Informat									· · · · 1						
	iision Point ID No. (Alternate II /IR BLR PCS Vent CAP	D) Control Equipment Code	Control Equipment Efficiency	HAP/TAP CAS Number	•	Prop	oosed Emission R	Rates	Em	Permitted ission Rate (Current)	Add, Chang Delete,	e, Complian	ce Con	icentra exiting		0
	Pollutant				Averag	ge	Max	Annual		Annual	Unchan	ged		e		

		(lbs/hr)	(lbs/hr)	(tons/yr)	(tons/yr)	-	
COBALT COMPOUNDS	7440-48-4	0.001		< 0.01		Add	
COPPER (AND COMPOUNDS)	7440-50-8	0.002		0.008		Add	
MANGANESE (AND COMPOUNDS)	7439-96-5	0.001		< 0.01		Add	
MERCURY (AND COMPOUNDS)	7439-97-6	0.001		0.003		Add	
NICKEL (AND COMPOUNDS)	7440-02-0	0.005		0.020		Add	
ZINC (AND COMPOUNDS)	7440-66-6	0.06		0.28		Add	

					State of	f Louisia	ina								Date o	of Subm	ittal	
			Emission	s Invento	ory Questi	onaire (EIQ)) for Air P	ollutants						Fe	ebruar	y 202	3
	Emission Point ID N (Alternate ID)	0.	Descr	iptive Name o	f the Emission	s Source (Al	lt. Nam	e)		Appro	ximate L	ocation of	Stack or	Vent (see	instruc	tions)		
	SMR		Steam Methan	e Reformer					Method		18,"Int	terpolatio	on - Map	o"	Da	ıtum	NAE	083
Т	empo Subject Item ID	No	-						UTM Zone	15	Horiz	ontal 7	106279	mE V	vertical	331	8808	mN
	EQT 0001	110.							Latitude	29	0	58	,	58 '	•	23		iredths
	EQTOUT								Longitude	90	0	51	•	42 '	•	67	-	lredths
Staa	k and Discharge	Diama	ter (ft) or Stack	Height of S	Staals Staal	k Gas Exit	Star	k Gas Flow at	Stack Gas			 Operating	Da	te of	Do	rcent o	_	
Physic	cal Characteristics		harge Area (ft ²)	Above gra		elocity	Con	ditions, not at dard (ft ³ /min)	Tempera	ature	Time (h	ours per ar)	Constru	uction or fication	Thoug		hroug	h This
			10.7 ft					, ,	(1)	,	-		1/9/	2017	Jan-	Apr-	Jul-	Oct-
	No			213.25	ft 78.	93 ft/sec	422	2666 ft^3/mi	in 336	°F	8760) hr/yr			Mar	Jun	Sep	Dec
	INO		ft ²	215.25	n /o.	95 IUSEC	422	2000 11 3/111	III 550	r	0/00) III/yi	const	tructed	25	25	25	25
	Т	ype of Fue	l Used and Heat In				_			Ор	erating P	arameters	(include	units)				
Fuel		Type of F		Heat I	nput (MMBTU	J/hr)						Para	meter		1	Descrip	tion	-
	a	Natural C			1725			Normal Opera	ting Rate/Thr	oughput		1,725.00	MMBtu/ł	nr				
	b	Process	Gas		Balance			Maximum Op	-		ut	1,794.00	MMBtu/ł	ır				
			Notes				-	Design Capac Displacement		ylinder								
The SN	/IR is designed to	onerate w		natural cas	feed or a		-	Shell Height (
	nation of natural ga					innual		Tank Diamete	,									
	ons are accounted							Tanks:	Fixed Ro	of	Floatir	ng Roof	Fx	ternal		Inte	ernal	
EPN S	MR BLR PCS Ver	nt CAP).			[*]			Date Engine C			110000	-	gine Mod				Indi	
								Date Engine V		Anufactu	ırer		0					
							1	SI Engines:		Rich Bur	n	Lean B	urn	2 Str	oke		4 Stro	oke
Air Po	ollutant Specific I	nformat	ion															
	iision Point ID No. (A SMR			Control Equipment Efficiency	HAP/TAP CAS Numbe	r	Prop	osed Emission	Rates	Emis	rmitted sion Rate Current)	Add, Chang Delete,	e, Co	ontinuous ompliance	Con	centrat exiting		0
	Pollutant					Avera (lbs/h		Max (lbs/hr)	Annual (tons/yr)		nnual ons/yr)	Unchan		Method		caning	ut stuc	ĸ
	CARBON MONO	KIDE						98.50				Chang	ge					
	NITROGEN OXII	DES						269.10				Chang	-					
	PM10							13.37				Chang	ge					
	PM2.5							13.37				Chang	ge					
	SULFUR DIOXI	DE						1.08				Chang	ge					
]	FOTAL VOC (INCL. I	/						6.71				Chang	-					
	1,4-DICHLOROBEN	IZENE			106-46-7			0.001				Chang						
	BENZENE				71-43-2			0.003				Chang	ge					

50-00-0

Change

FORMALDEHYDE

			Emission	s Invento	State of ory Questio			for Air Po	ollu	itants							of Subn ebruai	nittal y 202	3
	Emission Point ID N (Alternate ID)	0.	Descr	iptive Name o	f the Emissions	Source (Al	t. Nam	e)			Appro	oximate Lo	ocation of	Stack	or Vent (se	e instruc	tions)		
	SMR		Steam Methane	e Reformer					Me	thod		18."Int	erpolatio	n - M	lap"	D	atum	NAI	083
Т	empo Subject Item IE	No							UT	M Zone	15		ontal 7			Vertical	33		
10	EQT 0001	110.							Lati	itude	29	0	58		58	"	23		lredths
	LQ1 0001									ngitude	90	0	51		42		67	_	lredths
Physic	ek and Discharge cal Characteristics ange? (yes or no)		ter (ft) or Stack narge Area (ft ²)	Height of S Above gra		Gas Exit elocity	Con	k Gas Flow at ditions, not at idard (ft ³ /min)	S	tack Gas Temperat (°F)	Exit	Normal C Time (ho ye:	perating ours per	Cons	Date of struction or odification	Thou	ercent (ghput]	of Annu Throught on Poin	1al h This
			10.7 ft							()				1	/9/2017	Jan- Mar	Apr-		Oct-
	No		ft ²	213.25	ft 78.9	3 ft/sec	422	2666 ft^3/mi	in	336	°F	8760	hr/yr	CO	nstructed	Mar 25	Jun 25	Sep 25	Dec 25
	Т		l Used and Heat In				-				O	perating P	arameters	(inclu	de units)				
Fuel		Type of I		Heat I	nput (MMBTU/						Para	meter			Descrij	otion			
	a	Natural C			1725 Delemen			Normal Operat	-				1,725.00	MMBt	tu/hr				
	b	Process	Jas		Balance			Maximum Ope				out	1,794.00	MMB	tu/hr				
			Notes				ł	Design Capaci Displacement		olume/Cyl	lınder								
	AR is designed to							Shell Height (f	ft)										
	nation of natural ga							Tank Diameter	. ,										
	ons are accounted MR BLR PCS Ve		the SMR, Boile	er, PCS Ven	t CAP (GRP)	J002,		Tanks:		Fixed Roo	f	Floatin	~ _		External		Int	ernal	
EPIN 5	WIR DLR PCS VE	nt CAP).						Date Engine O					En	gine M	lodel Year				
								Date Engine W	Vas B				I D			1		4.04	1
								SI Engines:		R	Lich Bu	rn 🗋	Lean B	urn	2 Str	гоке		4 Stro	эке
Air Po Emm	<u>ollutant Specific 1</u> iision Point ID No. (A SMR	l <u>nformat</u> Alternate II	ion) Control Equipment Code	Control Equipment Efficiency	HAP/TAP CAS Number		Prop	osed Emission I	Rates	5	Emi	ermitted ssion Rate Current)	Add, Chang Delete,	e,	Continuous Compliance	0		tion of g	
	Pollutant					Avera (lbs/h	0	Max (lbs/hr)		Annual tons/yr)		Annual tons/yr)	Unchan		Method		exiting	at stat	ĸ
	HEXANE (-N))				T	2.20					Chang	ze l						
	METHANOL				110-54-3 67-56-1			4.98			+		Chang	-					
	NAPHTHALEN	ΙE			91-20-3			< 0.001					Unchan	-					
	TOLUENE				108-88-3			0.004					Chang	ge					
	AMMONIA				7664-41-7			24.06					Chang	ge					
A	RSENIC (AND COM	POUNDS)			7440-38-2			< 0.001					Add						
B	ARIUM (AND COMP	OUNDS)			7440-39-3			0.008					Add						

0.002

7440-43-9

7440-47-3

CADMIUM (AND COMPOUNDS)

CHROMIUM VI (AND COMPOUNDS)

Add

Add

						Stat	te of L	ouisia	na							Da	ate of Subr	nittal	
				Emissior	ns Invento	ry Qu	estion	naire (l	EIQ)	for Air P	ollutants	5					Februar	y 202	3
		on Point ID N ternate ID)	0.	Desci	riptive Name o	f the Emi	issions S	ource (Al	t. Name	e)		Арр	roximate L	ocation of s	Stack or Vent (s	ee inst	ructions)		
		SMR		Steam Methan	e Reformer						Method		18."Int	erpolatio	n - Map"		Datum	NAI	783
Т		bject Item ID	No								UTM Zone	1:	5 Horiz			Vert	ical 33		
1	-	JT 0001	110.								Latitude	29		58 '	58		23		dredths
	L	21 0001									Longitude	<u></u> 90		51	42	- "	67	_	dredths
Physic	cal Char	ischarge acteristics es or no)		er (ft) or Stack arge Area (ft ²)	Height of S Above gra		Stack G Velo	as Exit ocity	Cone	k Gas Flow at ditions, not at dard (ft ^{3/} min)	Stack Ga Temper (°F	s Exit ature	Normal C Time (he	Dperating ours per ar)	Date of Construction of Modification		Percent loughput Emissi	 of Annu Fhroug	ual sh This
			1	0.7 ft							,	,			1/9/2017		an- Apr- ar Jun		Oct-
	No			ft ²	213.25	ft	78.93	ft/sec	422	666 ft^3/mi	n 336	°F	8760	hr/yr	constructed			Sep 25	Dec 25
	Type of Fuel Used and Heat Input (see instructions)											C	perating P	arameters	(include units)				
Fuel			Type of F		Heat I	nput (MN		r)						Para	meter		Descri	otion	
	а		Natural G			1725				Normal Opera	ting Rate/Th	roughpu	t	1,725.00	MMBtu/hr				
	b		Process G	Gas		Balance	е			Maximum Op	erating Rate/	Through	iput	1,794.00	MMBtu/hr				
				Notes						Design Capaci Displacement	ity/Volume/C	ylinder							
The SN	/R is d	esigned to	operate w	ith either 100%	natural cas	feed or	9				0)								
				cess gas feed.				ual		Shell Height (i Tank Diameter	,								
				the SMR, Boild						Tanks:	Fixed Ro	oof	Floatin	ig Roof	External		Int	ernal	
EPN S	MR BL	R PCS Ve	nt CAP).							Date Engine C				-	gine Model Year			ernar	
										Date Engine V		Manufac	cturer		0				
										SI Engines:		Rich B	urn	Lean Bu	ırn 🗌 2 S	Stroke		4 Str	oke
Air P	ollutan	t Specific I	[nformati	on															
		oint ID No. (A			Control	HAP/							Permitted	Add,	a <i>i</i>				
		SMR		Equipment Code	Equipment Efficiency	CAS N	umber		Propo	osed Emission	Rates		ission Rate (Current)	Chang Delete,	e, Comulian	ice (Concentra exiting	tion of g at stac	0
		Pollutant						Avera (lbs/h		Max (lbs/hr)	Annual (tons/yr))	Annual (tons/yr)	Unchan	ged			,	
	COBA	LT COMPOU	JNDS			7440-	48-4			< 0.001				Add					
C	OPPER	(AND COMP	OUNDS)			7440-	50-8			0.002				Add					
MA	NGANES	SE (AND CO	MPOUNDS))		7439-	96-5			< 0.001				Add					
M	ERCURY	(AND COM	POUNDS)			7439-	97-6			< 0.001				Add					

0.05

7440-02-0

7440-66-6

Add

Add

NICKEL (AND COMPOUNDS)

ZINC (AND COMPOUNDS)

	State of Louisiana														Date of Submittal					
			Emission	s Invento	ory Questi	onaire (EIQ)	for Air Po	ollutants						F	ebruar	y 202	3		
	Emission Point ID N (Alternate ID)	0.	Descr	iptive Name o	f the Emission	s Source (Al	lt. Name)		Appro	oximate I	ocation of	Stack or V	Vent (see	see instructions)					
	BLR		Auxiliary Boil	er					Method		"	Datum NAD83								
Т	empo Subject Item ID	No.							UTM Zone	15	Horiz	zontal 7	06241	mE V	ertical	331	8778	mN		
	EQT 0002								Latitude	29	0	58	,	57 "		28	hund	lredths		
									Longitude	90	0	51		44 "	" 11		hund	lredths		
Physi	ck and Discharge cal Characteristics ange? (yes or no)		ter (ft) or Stack harge Area (ft ²)	Height of S Above grae		k Gas Exit Velocity	Cond	x Gas Flow at litions, not at dard (ft ³ /min)	Stack Gas Temper (°F	ature	Time (l	Operating nours per ear)	Date Constru Modifi	e of ction or	01		hroug	h This		
			8.26 ft							, 			1/9/2	2017	Jan- Mar	Apr-	Jul-	Oct-		
	Yes		ft ²	213.25	ft 44.	59 ft/sec	2100	010 ft^3/mi	n 300	°F	876	0 hr/yr	constr	ructed	Mar 25	Jun 25	Sep 25	Dec 25		
	Т	ype of Fue	l Used and Heat In	put (see instru	operating rarameters (merude units)															
Fuel		Type of I		Heat Ir	nput (MMBTU								meter			Descrip	otion			
	a	Natural C			525			Normal Operat	ting Rate/Thr	oughput		525.00 N	/MBtu/hr							
	b Process Gas Balance							Maximum Ope	-		out	1,100.00	MMBtu/h	r						
			Notes				+	Design Capaci Displacement	ity/Volume/C	ylinder										
	uxiliary Boiler is d							Shell Height (f	ft)											
	nation of natural ga							Tank Diameter (ft)												
	ons are accounted		the SMR, Boile	er, PCS Vent	t CAP (GRP	0002,														
EPN S	MR BLR PCS Ver	ni CAP).						Date Engine Ordered Engine Model Y												
								Date Engine Was Built by Manufacturer SI Engines: Rich Burn Lean Burn 2 Stroke										-1r-a		
								SI Eligines.					uIII		JKC		4 Stro	JKC		
	ollutant Specific I nision Point ID No. (A			Control	НАР/ТАР					D,	ermitted									
Emm	BLR		Equipment Code	Equipment Efficiency	CAS Number	r	Propo	sed Emission I	Rates	Emi	ssion Rat Current)	e Add, e Chang Delete,	e, Con	ntinuous mpliance		centra		0		
	Pollutant					Avera (lbs/ł	0	Max (lbs/hr)	Annual (tons/yr)		Annual tons/yr)	Unchan	10	Aethod		exiting	at stat	K		
	CARBON MONO	ADE						48.02				Chang	re.							
	NITROGEN OXII							108.90				Chang								
	PM10							8.20				Chang	ge							
	PM2.5						8.20				Chang	ge								
	SULFUR DIOXI						0.66				Chang									
	TOTAL VOC (INCL. I						5.94				Chang									
	1,4-DICHLOROBEN	IZENE			106-46-7			< 0.001				Unchan	-							
	BENZENE 71-43-2							0.001				Unchan	-							
	FORMALDEHY			50-00-0			0.02				Unchan	ged								

-																		
	State of Louisiana Emissions Inventory Questionaire (EIQ) for Air Pollutants														Date of Submittal			
			Emission	s Invento	ory Questio	naire (1	EIQ)	for Air P	ollutants						Fe	ebruar	y 202	3
		on Point ID No. ternate ID)	Descr	iptive Name o	f the Emissions S	Source (Al	t. Nam	e)		Appr	oximat	e Location of	Stack or `	Vent (see	instruc	tions)		
		BLR	Auxiliary Boil	er					Method		18,'	Interpolatio	on - Map		Da	atum	NAL	283
Т	emno Su	bject Item ID No.							UTM Zone	15	Но	rizontal 7	06241	mE V	'ertical	331	8778	mN
	-	QT 0002							Latitude	29	o	58	•	57 "		28		dredths
	E.	21 0002							Longitude	90	0	51	, –	<u> </u>		11	-	dredths
Stor	k and D	ischarge Diamet	er (ft) or Stack	Height of S	of Stack Stack Gas Exit			k Gas Flow at	Stack Gas		Norm	al Operating	Dat	e of	P	ercent o	-	
Physic	cal Char	8	arge Area (ft ²)	Above gra		locity	Con	ditions, not at	Tempera (°F	ature		e (hours per year)	Constru	iction or ication	Thoug	ghput T Emissio	hroug	h This
		8	3.26 ft							,		• /	1/9/2	2017	Jan-	Apr-	Jul-	Oct-
	Yes			213.25	ft 44.59	9 ft/sec	210)010 ft^3/mi	in 300	°F	07	760 hr/yr			Mar	Jun	Sep	Dec
	1 65		ft ²	215.25	II 44.5	9 10/500	210	1010 It 5/III	III 300	1	0	111/yi	constr		25	25	25	25
		••	Used and Heat In		,					units)								
Fuel		Type of F		Heat I	nput (MMBTU/ł	ır)						Para	meter]	Descrip	tion	
	a	Natural G			525			Normal Opera	ting Rate/Thre	oughput		525.00 N	/MBtu/hr					
	b	Process C	jas		Balance			Maximum Op	e	01	put	1,100.00	MMBtu/h	r				
			Notes					Design Capac Displacement	ity/Volume/C	ylinder								
The A	wiliary	Boiler is designed to		ither 100%	natural gas fee	ed or a			A)									
		of natural gas and pro						Shell Height (Tank Diamete										
		accounted for under						Tanks:	Fixed Ro	of	Flo	ating Roof	- Evt	ernal	Γ	Int	rnal	
		R PCS Vent CAP).	,	, ,	× ×	,		Date Engine C		01	110	ē	gine Mode				11141	
								Date Engine V		Aanufac	turer		gine nice					
								SI Engines: Rich Burn Lean Burn							2 Stroke 4 Stroke			oke
Air Pa	llutan	t Specific Informati	on															
		int ID No. (Alternate ID		Control	НАР/ТАР					Р	ermitte	d Add						
		BLR	Equipment Code	Equipment Efficiency	CAS Number		Prop	osed Emission	Rates		ission F Curren	Chang	ge, Col	ntinuous mpliance Method	Con	centrat exiting		0
		Pollutant				Avera (lbs/h	0	Max (lbs/hr)	Annual (tons/yr)		Annual tons/yr		ged	letiivu				
	H	IEXANE (-N)			110-54-3			0.58				Chang	ge					
	METHANOL				67-56-1			0.84				Chang	-					
	TOLUENE				108-88-3			0.001				Unchan	ged					
AMMONIA					7664-41-7			10.21				Chang	ge					
В	ARIUM	(AND COMPOUNDS)			7440-39-3			0.005				Add						
CA	DMIUM	(AND COMPOUNDS)			7440-43-9			0.001				Add						
		VI (AND COMPOUNDS	5)		7440-47-3			0.002				Add						
C	OPPER	(AND COMPOUNDS)			7440-50-8			< 0.001				Add						

< 0.001

7439-96-5

Add

MANGANESE (AND COMPOUNDS)

					Stat	te of L	ouisia	na								Date of	of Subn	nittal	
			Emissior	ns Invento	ory Qu	estion	aire (1	EIQ) for Air	Po	llutants						Fe	ebruar	y 202	3
	Emission Point ID N (Alternate ID)	lo.	Desci	riptive Name o	of the Emi	issions So	ource (Al	t. Name)	Approximate Location of Stack or Vent (see instructions)										
	BLR		Auxiliary Boil	er						Method		18,"Inte	erpolatio	on - Mai	b "	Da	atum	NAL)83
Т	empo Subject Item II) No								UTM Zone	15		ontal 7			ertical			
10	EQT 0002	J 110.								Latitude	29		58	'			28		lredths
	LQ1 0002									Longitude	<u> </u>		51	•	44 "		11	_	lredths
Physic	k and Discharge cal Characteristics ange? (yes or no)		ter (ft) or Stack aarge Area (ft ²)	Height of S Above gra				Stack Gas Flow Conditions, not Standard (ft ³ /n	Gas Flow at ions, not at Temperat		Exit	Normal O Time (ho yea	perating urs per	Constr	ate of ruction or ification	Percent of A			h This
		8	3.26 ft					× ·	,	(1)			,	1/9/	/2017	Jan- Mar	Apr- Jun	Jul- Sep	Oct- Dec
	Yes	ft ²	213.25	ft	44.59	ft/sec	210010 ft^3	/mir	n 300	°F	8760	hr/yr		structed	25	25	25	25	
	Г						0	perating Pa	rameters	(include	e units)								
Fuel		uel	Heat I	nput (MN	/IBTU/hr)						Para	meter]	Descrip	otion		
	a Natural Gas				525			Normal Op	erati	ing Rate/Throu	ughput	t	525.00 N	/MBtu/h	ır				
	b	Process (Gas		Balance	e		Maximum	Oper	rating Rate/Th	rough	put	1,100.00	MMBtu/l	'hr				
			NY .						Design Capacity/Volume/Cylinder Displacement										
			Notes	.1 1000/				-											
	ixiliary Boiler is c	0	1			0		Shell Heig											
	nation of natural g							Tank Dian	leter	()	2						7		
	MR BLR PCS Ve		the SMR, Dong				02,	Tanks:		Fixed Roo	f	Floating	-		xternal		Inte	ernal	
LIND		ni er i j.						Date Engin				4	En	gine Mod	del Year				
								SI Engines		as Built by Ma	anutac lich Bi		Lean B		2 Stro	1-0		4 Stro	-1
								SI Engines	•				Lean D	urn L		бке		4 510	эке
	ollutant Specific												1						
Emm	Emmision Point ID No. (Alternate ID) BLR			Control Equipment Efficiency	HAP/ CAS Nu			Proposed Emissi	on R	ates	Em	(Current) Change, Complete		ontinuous ompliance Method	liance Concentr		tion of at stac	8	
	Pollutant					Avera (lbs/h	0		Annual (tons/yr)		Annual (tons/yr)	Unchan	ged	nicinou					
MERCURY (AND COMPOUNDS) 7439-						-97-6		< 0.001					Add						
N	NICKEL (AND COMP	OUNDS)			7440-	-02-0		0.002					Add						
	ZINC (AND COMPC	UNDS)			7440-	-66-6		0.03					Add						

				State of	f Louisiar	a							Date of	of Subn	nittal		
		Emissior	is Invento	ory Questi	ionaire (E	IQ)) for Air P	ollutants					Fe	ebruar	y 2023	3	
	Emission Point ID No. (Alternate ID)	Desci	iptive Name o	of the Emission	s Source (Alt.	Nam	ie)		Approx	ximate Lo	ocation of S	tack or Vent (see	e instruc	tions)			
	× ,	Flare						Method		18 "Inte	erpolatior	n - Man''	D	atum	NAD	183	
	FLR							UTM Zone	15)5987 mE V		-			
Те	empo Subject Item ID No.								-				" ertical				
	EQT 0003							Latitude	29	-		52		79	-	redths	
			1					Longitude	90	0		53	"	68	-	redths	
Physic	8	neter (ft) or Stack charge Area (ft ²)			Velocity		ck Gas Flow at iditions, not at idard (ft ³ /min)	Stack Gas Exit Temperature (°F)				Date of Construction or Modification	Percent of Annual r Thoughput Through T Emission Point				
		4.45 ft					· · · ·		,	·	,	1/9/2017	Jan-	Apr-	Jul-	Oct-	
	Yes	-	185	ft 65	65.6 ft/sec		668 ft^3/mi	n 1832	۴	8760	hr/yr		Mar	Jun	Sep	Dec	
	1 05	ft ²	165	n 05	.0 10 500	51	008 it 5/111	11 1652	ľ	8700	III/yi	constructed	25	25	25	25	
		iel Used and Heat Ii		,					Оре	erating Pa	arameters ((include units)					
Fuel	Type of	Fuel	Heat I	nput (MMBTU	J/hr)						Paran	neter]	Descrip	otion		
							Normal Opera	ting Rate/Thr	oughput								
							Maximum Op	e	01	ıt							
		Notes					Design Capaci Displacement	ty/Volume/C	ylinder								
							Shell Height (1	t)									
							Tank Diamete	/									
							Tanks:	Fixed Ro	of	Floatin	g Roof [External	Internal				
							Date Engine C	Irdered			Eng	ine Model Year					
							Date Engine V	Vas Built by N	/lanufactu	rer							
							SI Engines:		Rich Buri	n 🗌	Lean Bu	rn 🗌 2 Str	roke		4 Stro	oke	
Air Po	ollutant Specific Information	ntion															
Emm	nision Point ID No. (Alternate FLR	ID) Control Equipment Code	Control Equipment Efficiency	HAP/TAP CAS Numbe	er	Prop	osed Emission	Rates	Emis	rmitted sion Rate urrent)	Add, Change Delete, o		e Con		tion of g at stac	<i>.</i>	
	Pollutant				Average (lbs/hr)		Max (lbs/hr)	Annual (tons/yr)		nnual ons/yr)	Unchang	ed					
	CARBON MONOXIDE				25.23		2170.00	110.50	6	57.55	Change	e					
	NITROGEN OXIDES				6.15		523.60	26.92	1	15.11	Change						
	PM10				0.04		2.50	0.16		0.08	Change	e					
	PM2.5				0.04		2.50	0.16		0.08	Change						
	SULFUR DIOXIDE				0.02		0.67	0.10		0.05	Change						
Т	TOTAL VOC (INCL. LISTED)				2.25		11056.44	9.87		7.49	Change						
	BENZENE			71-43-2	< 0.001		0.06	< 0.01			Add						
	FORMALDEHYDE			50-00-0	0.01		2.02	0.03			Add						

0.16

110-54-3

48.38

0.69

HEXANE (-N)

Add

	State of Louisiana															Date of Submittal				
				Emission	is Invento	ry Qi	uestio	naire (l	EIQ)	for Air P	ollutants	5					February 2023			
		Point ID No nate ID)	D.	Descr	iptive Name o	f the En	nissions S	ource (Al	t. Nam	e)		Арр	roximate Lo	ocation of S	Stack or Vei	nt (see	instruc	tions)		
		ĹR		Flare							Method		18,"Int		D	atum	NAI	283		
т	г empo Subje		No								UTM Zone	1		ontal 7		nE V	Vertical 3318635 r			
1		[0003	110.								Latitude	29		58 '		2 "		79		iredths
	LQI	0005												51 '		3 "		-	lredths	
Physi	ck and Disc cal Charact ange? (yes o	teristics		ter (ft) or Stack narge Area (ft ²)		0		locity Condi		k Gas Flow at ditions, not at dard (ft ³ /min)	Temperatu		Normal C Time (he	perating	ting Date of				of Annu Throug	ual h This
	Vas		2	4.45 ft	105	0		G /	21669 802/			, ,	0700	1 /	1/9/20	17	Jan- Mar		Jul- Sep	Oct- Dec
	Yes			ft ²	185	ft	65.6	ft/sec	310	568 ft^3/mi	ft^3/min 1832 F		8760	hr/yr	construc	cted	25	25	25	25
		T	ype of Fue	l Used and Heat In								(Operating P	arameters	(include uni	its)				
Fuel	uel Type of Fuel Heat Input (MMBTU/hr)					r)						Para	meter		Description					
										Normal Opera	ting Rate/Thi	oughpu	ıt							
										Maximum Op	e	U	1							
				Notes						Design Capac Displacement	ity/Volume/C	ylinder								
										Shell Height (ft)									
										Tank Diamete										
										Tanks:	Fixed Ro	oof	Floatin	g Roof	Extern	al		Int	ernal	
										Date Engine C			1	Eng	gine Model Y	lear				
										Date Engine V	Vas Built by I									
										SI Engines:		Rich B	urn	Lean Bu	ırn	2 Stro	oke		4 Stro	oke
	ollutant S					I														
Emn	nision Point I	t ID No. (A FLR	lternate II	D) Control Equipment Code	Control Equipment Efficiency		P/TAP Number		Propo	osed Emission 1	Rates		Permitted nission Rate (Current)	Add, Change Delete,	e, Comu	liance	Con	icentra exiting		0
	Pollutant						Avera (lbs/h		Max (lbs/hr)	Annual (tons/yr)		Annual (tons/yr)	Unchang	wiei	inou		B			
	ME	ETHANOL				67-	56-1	1.88		11056.44	8.22		5.93	Chang	je –					
		OLUENE				108	-88-3	< 0.00)1	0.09	< 0.01			Add						
В	ARIUM (A	ND COMP	OUNDS)			7440)-39-3	< 0.00)1	0.118	0.002			Add						
CHR	OMIUM VI	I (AND CO	MPOUND	5)		7440)-47-3	< 0.00)1	0.038	0.001			Add		-				

< 0.001

0.003

0.056

0.78

0.001

0.01

7440-02-0

7440-66-6

Add

Add

NICKEL (AND COMPOUNDS)

ZINC (AND COMPOUNDS)

-																			
				Sta	te of I	Louisia	na								Date	of Subm	ittal		
		Emissio	ns Invento	ry Q	uestio	naire (I	EIQ)	for Air P	ollutan	ts					February 2023				
	Emission Point ID No. (Alternate ID)	Desc	riptive Name o	f the En	nissions S	ource (Alt	t. Name)		Арр	roximate	Location of	Stack or V	Vent (see i	instruc	ctions)			
	CWT	Cooling Wate	r Tower						Method		18,"I	,"	D	atum	NAE	083			
т	empo Subject Item ID No.								UTM Zor	e 1					Vertical 3318720				
	EQT 0007								Latitude	29		58		55 "		42		_	
							Longitude			51		45 "	<u>42</u> "97						
Physi	8	er (ft) or Stack arge Area (ft ²)	Height of S Above grad				Cond	x Gas Flow at litions, not at lard (ft ³ /min)	Stack Gas Exit Temperature		Norma Time	l Operating (hours per year)	Derating Date of Construction or		01				
		4.38 ft						~ /				• /	1/9/2	2017	Jan- Mar	Apr- Jun	Jul- Sep	Oct- Dec	
	Yes	ft ²	46	ft	22.13	ft/sec	1234	453 ft^3/mi	n 68	°F	870	50 hr/yr		ructed	25	25	25	25	
F 1		Used and Heat I	• `	,						(Operating	Parameters	(include	units)					
Fuel	Type of F	uel	Heat II	iput (M	MBTU/h	r)						Para	meter			Descrip	tion		
								Normal Opera	•	• •		200,000	0.00 gpm		c	irculatio	n rate		
								Maximum Op	-	-	-								
		Notes						Design Capaci Displacement	city/Volume/Cylinder t										
								Shell Height (1	ft)										
								Tank Diamete	nk Diameter (ft)										
								Tanks: Fixed Roof Floating Roof External											
								Date Engine C				En	igine Mode	el Year					
								Date Engine V	Vas Built by			_		_					
								SI Engines:		Rich B	urn	Lean B	urn	2 Stro	ke		4 Stro	oke	
Air P	ollutant Specific Informati	on																	
Emn	nision Point ID No. (Alternate ID CWT	9) Control Equipment Code	Control Equipment Efficiency		P/TAP Number		Propo	sed Emission	Rates	En	Permitted nission Ra (Current)	Chang	ge, Con	ntinuous mpliance Method	Con	ncentration of exiting at sta			
	Pollutant					Averag (lbs/h	<i>,</i>	Max (lbs/hr)	Annua (tons/y		Annual (tons/yr)	Unchan	/ Method						
	CARBON MONOXIDE					1.07			4.69			Add							
	PM10 0.4								1.82		2.78	Chang							
	PM2.5					0.11			0.84		1.32	Chang	-						
	TOTAL VOC (INCL. LISTED)			36.79		8.65	Chang	-											

67-56-1

8.40

Change

8.65

36.79

METHANOL

			Emission	s Invento		te of Lo			for Air Po	llutant	5						of Subm ebruar		3
			Limston	5 m vento	i y Qu		uii e (1	<u>, ()</u>)11 u tu 11t	,					10	coruar	y 202.	5
	Emission Point ID N (Alternate ID)	0.	Descr	iptive Name o	f the Emi	issions So	urce (Alt	. Name)		Арри	oximate Lo	ocation of S	Stack	or Vent (see	e instruc	tions)		
	EGEN2	А	dmin Buildin	g Emergenc	y Gene	rator				Method		18,"Inte	erpolation	n - M	[ap"	Da	atum	NAE)83
Т	empo Subject Item II) No.								UTM Zone	15	5 Horizo	ontal 70	8673	.5 mE V	/ertical	331	9560	mN
-	EQT0026									Latitude	29		59 '		21	"	18		lredths
	_									Longitude	90		50 '	,	12	"	84	– hund	lredths
Physi	ek and Discharge cal Characteristics ange? (yes or no)		(ft) or Stack ge Area (ft ²)	Height of S Above grad		Stack Ga Veloc		Conc	x Gas Flow at litions, not at dard (ft ³ /min)	Stack Ga Temper (°H	ıs Exit rature	Normal O Time (ho yea	perating ours per	Cons	Date of struction or odification	Thoug	ercent o ghput T Emissio	hroug	h This
		0.0	4 ft							,	,			Μ	ay 2019	Jan- Mar	Apr- Jun	Jul- Sep	Oct- Dec
	Yes		ft ²	12	ft	264.51	ft/sec	19.	32 ft^3/min	n 1175	5°F	100	hr/yr	coi	nstructed	25	25	25	25
	Т	ype of Fuel Us	sed and Heat In	• ·							0	perating Pa	arameters	(inclu	de units)				-
Fuel		Type of Fuel		Heat II		MBTU/hr))							meter]	Descrip	tion	-
	а	Natural Gas			1.59				Normal Operat	ing Rate/Th	roughpu	t	210.0	00 hp					
									Maximum Ope	-	•	put							
			Notes						Design Capacit Displacement	ty/Volume/C	Cylinder								
									Shell Height (f	t)									
									Tank Diameter	,									
									Tanks:	Fixed R	oof	Floating	g Roof		External		Inte	ernal	
									Date Engine O	rdered			Eng	gine M	Iodel Year				
									Date Engine W	as Built by	Manufac								
									SI Engines:		Rich B	urn 🗸	Lean Bu	urn	2 Str	oke	✓	4 Stro	oke
Air P	ollutant Specific	Information	l																
Emn	ision Point ID No. (Alternate ID) EGEN2 Code Equipment Efficiency Code Efficiency			Propo	sed Emission F	Rates	Em	Permitted ission Rate (Current)	Add, Change Delete,	e,	Continuous Compliance Method	Con	centrat exiting						
	Pollutant						Averag (lbs/hi	/	Max (lbs/hr)	Annual (tons/yr)		Annual (tons/yr)	Unchang	ged	wiethoù		8		
	CARBON MONO	XIDE					1.85		1.85	0.09		0.09	Unchang	ged					
	NITROGEN OXI	DES					0.92		0.92	0.05		0.05	Unchang	-					
	PM10						0.02		0.02	< 0.01		< 0.01	Chang	ge					

0.02

< 0.001

0.46

0.01

0.08

75-07-0

50-00-0

< 0.01

< 0.01

0.02

< 0.01

< 0.01

0.02

< 0.001

0.46

0.01

0.08

Change

Unchanged

Unchanged

Unchanged

Unchanged

< 0.01

< 0.01

0.02

< 0.01

< 0.01

PM2.5

SULFUR DIOXIDE

TOTAL VOC (INCL. LISTED)

ACETALDEHYDE

FORMALDEHYDE

			Emission	s Invento	State of ory Question		na EIQ) for Air F	olluta	ants					of Subr ebrua	nittal ry 2023	3
	Emission Point ID N (Alternate ID)	lo.	Descr	iptive Name o	f the Emissions	Source (Alt	. Name)		Арри	roximate Lo	cation of S	Stack or Vent (see instru	ctions)		
	МТРСАР	Ν	Iethanol Tran	sfer and Pro	duct Tank Ca	ap		Metho	od				D	atum _		
Т	empo Subject Item IE) No.						UTM	Zone 1	5Horizo	ntal	mE	Vertica	1		mN
	GRP TBD							Latitu	de	0			"		hund	redths
								Longi	tude	0	,		"		hund	redths
Physic			()	Height of S Above gra		Gas Exit elocity	Stack Gas Flow at Conditions, not at Standard (ft ³ /min	Те	ck Gas Exit emperature ([°] F)	Normal O Time (ho yea	urs per	Date of Construction Modification	or Thou	ghput '	of Annu Fhrougl on Poin	h This
			ft						(1)		ŕ		Jan-	Apr-		Oct-
	No		ft ²		ft	ft/sec	ft^3/m	in	°F		hr/yr		Mar	Jun	Sep	Dec
	Т	ype of Fuel U	sed and Heat In	put (see instru	ictions)				C	perating Pa	rameters	(include units)				
Fuel		Type of Fuel	l	Heat I	nput (MMBTU/	/hr)					Parar	neter		Descri	ption	
			Notes				Normal Oper Maximum Oj Design Capao Displacemen	erating l	Rate/Through							
This C	ap is currently per	mitted as Gl		er the KMe	Ferminal Titl	e V	Shell Height									
	No. 3169-V3 and						Tank Diamet	· /								
LOAD	, TK-26-202A, TK	К-26-202В,	TK-26-202C,	, and TK-26	-202D.		Tanks:	Fix	ked Roof	Floating	, Roof [External		Int	ernal	
							Date Engine				Eng	gine Model Year	•			
							Date Engine	Was Bui	_							
							SI Engines:		Rich B	urn	Lean Bu	rn 🗌 2 S	Stroke		4 Stro	oke
	ollutant Specific I ision Point ID No. (A MTPCAP		Control Equipment	Control Equipment	HAP/TAP CAS Number		Proposed Emission	Rates	En	Permitted hission Rate	Add, Change		<u> </u>	icentra	tion of s	gases
	Pollutant		Code	Efficiency		Averag (lbs/hr	,		inual	(Current) Annual (tons/vr)	Delete, o Unchang	or Metho			g at stac	0

			(lbs/hr)	(lbs/hr)	(tons/yr)	(tons/yr)			
			1		1	1		1	
CARBON MONOXIDE			1.81		7.94		Add		
NITROGEN OXIDES			5.50		24.09		Add		
PM10			0.16		0.72		Add		
PM2.5			0.16		0.72		Add		
SULFUR DIOXIDE			0.01		0.06		Add		
TOTAL VOC (INCL. LISTED)			6.36		27.88		Add		
FORMALDEHYDE		50-00-0	0.001		0.01		Add		
HEXANE (-N)		110-54-3	0.03		0.15		Add		
METHANOL		67-56-1	6.23		27.29		Add		

					of Louisia										f Subn		
		Emission	is Invento	ry Quest	tionaire (E	CIQ)	for Air Po	ollutants						Fe	ebruar	y 2023	3
I	Emission Point ID No. (Alternate ID)	Descr	iptive Name o	f the Emissio	ons Source (Alt	. Name	e)		Appr	oximate Lo	cation of S	Stack or Ve	nt (see	instruc	tions)		
	MTPCAP	Methanol Trar	nsfer and Pro	oduct Tank	Cap			Method						Da	tum _		
Ter	npo Subject Item ID No.							UTM Zone	15	Horizo	ntal	1	mE V	ertical			mN
	GRP TBD							Latitude		0			"			hund	redths
								Longitude		0	,		"			hund	redths
Physica	8	r (ft) or Stack rge Area (ft ²)	Height of S Above gra		nck Gas Exit Velocity	Cone	k Gas Flow at ditions, not at dard (ft ³ /min)	Stack Gas Tempera (°F)	ature	Normal O Time (ho yea	urs per	Date o Construct Modifica	ion or	Thoug	hput T	of Annu Through In Poin	h This
		ft							•					Jan-	Apr-	Jul-	Oct-
	No	ft ²		ft	ft/sec		ft^3/mir	ı	°F		hr/yr			Mar	Jun	Sep	Dec
	Type of Fuel	Used and Heat Ir	put (see instru	ictions)				1	0	perating Pa	rameters	(include un	its)				
Fuel	Type of Fu	el	Heat I	nput (MMBT	ſU/hr)						Para	meter]	Descrip	otion	
							Normal Operati	-									
							Maximum Ope	e	0	put							
		Notes					Design Capacit Displacement	y/Volume/Cy	ylinder								
This Ca	p is currently permitted as C	GRP 0001 und	er the KMe '	Ferminal T	itle V		Shell Height (ft	:)									
	No. 3169-V3 and includes e			0	EPNs RT		Tank Diameter										
LOAD,	TK-26-202A, TK-26-202B	, TK-26-202C	, and TK-26	-202D.			Tanks:	Fixed Ro	of	Floating	Roof	Extern	nal		Inte	ernal	
							Date Engine Or				Eng	gine Model `	Year				
							Date Engine W									. ~	
							SI Engines:		Rich Bı	ırn	Lean Bu	ırn	2 Stro	oke		4 Stro	oke
	lutant Specific Information		a	XX + D //T					-	•	[
Emmi	sion Point ID No. (Alternate ID) MTPCAP	Control Equipment Code	Control Equipment Efficiency	HAP/TAI CAS Numb		Propo	osed Emission R	lates	Em	ermitted ission Rate Current)	Add, Change Delete,	e, Comp	nuous liance			tion of g at stac	
	Pollutant				Averag (lbs/hr	·	Max (lbs/hr)	Annual (tons/yr)		Annual (tons/yr)	Unchang	wie	thod		extung	at stac	ĸ

7440-66-6

0.001

< 0.01

Add

ZINC (AND COMPOUNDS)

														1			
					State of]	Louisia	ina							Date	of Subr	nittal	
			Emission	s Invento	ory Questio	naire (EIQ)	for Air P	ollutants					F	Februar	ry 202	23
	Emission Point ID N (Alternate ID)	0.	Descr	iptive Name o	f the Emissions S	Source (Al	lt. Nam	e)		Appr	oximat	e Location of	Stack or Vent (se	e instru	ctions)		
	RT LOAD		Methanol Rail	car and Tan	k Truck Loadi	ng Opera	ations		Method		18,'	Interpolatio	on - Map"	Ľ	Datum	NA	D83
Т	empo Subject Item ID) No							UTM Zone	15	5 Ho	rizontal	705814 mE	Vertica	ul 33	18793	mN
	TBD								Latitude	29		58	58	"	2		dredths
	100								Longitude	90		52	' 0	"	2	— hun	dredths
Star	als and Disahanga	Diama	ter (ft) or Stack	Height of S	Staals Staals	Gas Exit	Staa	k Gas Flow at	Stack Gas			al Operating		n		-	
Physi	ck and Discharge cal Characteristics ange? (yes or no)		arge Area (ft ²)	Above gra		Gas Exit locity	Con	ditions, not at dard (ft ³ /min)	Temper	ature		e (hours per year)	Date of Construction of Modification		ercent ghput Emissi	Throug	gh This
	8 4 /		8 ft					,	(T	,		• •	1/9/2017	Jan-	Apr-		
	V			15	ft 1.85	ft/aaa		350 ft^3/m	in 1220	°F	07	760 ha/am		Mar	Jun	Sep	Dec
	Yes		ft ²	45	ft 1.85	ft/sec	00.	550 It 5/III	in 1320	Г	8.	760 hr/yr	constructed	25	25	25	25
	Т		l Used and Heat In				_			0	peratin	g Parameters	s (include units)				
Fuel		Type of I	fuel	Heat I	nput (MMBTU/ł	ır)	_					Para	ameter		Descri	ption	
								Normal Opera	ting Rate/Thr	oughput	t	908,850.	00 Mgal/yr	truck a	& railca	r throug	ghput
								Maximum Op	erating Rate/7	Through	put	6,000.0	0 gal/min	truck a	& railca	r throug	ghput
			Notes				-	Design Capac Displacement		ylinder			_				
Source	e is currently permi	itted os F		tha KMa Ta	rminal Title V	Dormit	-	1									
	.69-V3. The average							Shell Height (
	nol Transfer and P					nder the		Tank Diamete	Fixed Ro	of	Flo	ating Roof	External	Г	Lut	ernal	
								Date Engine (01	FIO	<u> </u>	igine Model Year		Int	ernal	
								Date Engine V		/anufac	turer		ignie Woder Fear				
								SI Engines:		Rich Bı		Lean B	Surn 2 S	roke		4 Str	roke
Air P	ollutant Specific 1	nformat	ion														
	nision Point ID No. (A			Control	НАР/ТАР					P	Permitte	d d					
	RT LOAD		Equipment Code	Equipment Efficiency	CAS Number		Prop	osed Emission	Rates		ission F (Curren	Chang	ge, Compliand		ncentra exiting	tion of g at sta	0
	Pollutant					Avera (lbs/l		Max (lbs/hr)	Annual (tons/yr)		Annual (tons/yr		nged		••••••	,	
	CARBON MONO	XIDE						3.07				Add	1				
	NITROGEN OXII							9.31				Add					
	PM10							0.28				Add	1				
	PM2.5							0.28				Add	1				
	SULFUR DIOXI	DE						0.02				Add	1				
,	TOTAL VOC (INCL. I	LISTED)						0.10				Add	1				
	FORMALDEHY				50-00-0			0.001				Add					
	HEXANE (-N))			110-54-3			0.03	1			Add	1				

0.001

7440-66-6

Add

ZINC (AND COMPOUNDS)

24. NSR Applicability Summary [LAC 33:III.504 and LAC 33:III.509] 🗌 N/A*

This section consists of seven subsections, A-G, and is applicable only to new and existing major stationary sources (as defined in LAC 33:III.504 or in LAC 33:III.509) proposing to permit a physical change or change in the method of operation. It would also apply to existing minor stationary sources proposing a physical change or change in the method of operation where the change would be a major source in and of itself. Add rows to each table as necessary. Provide a written explanation of the information summarized in these tables. Consult instructions.

* PSD requirements has been voluntarily and conservatively applied. Please refer to Section 2.2.1 for further detail.

24.A. Project Summary

		Α	В	С	D	Е	F
Emission Point ID	Description	New, Modified, Affected, or Unaffected*	Pre-Project Allowables (TPY)	Baseline Actual Emissions (over 24-month period)	Projected Actual Emissions (TPY)	Post-Project Potential to Emit (TPY)	Change
PM2.5	24-Month Period: MM/DD/	YYYY - MM/DD/Y	YYY				
						PM _{2.5} Change:	
PM ₁₀	24-Month Period: MM/DD/	YYYY - MM/DD/Y	YYY				

SO ₂	24-Month Period: MM/DD/	YYYY-MM/DD/Y	YYY			
					SO ₂ Change:	

NO _X	24-Month Period: MM/DD/	YYYY - MM/DD/Y	YYY			
					NO _x Change:	

PM₁₀ Change:

СО	24-Month Period: MM/DD/	YYYY - MM/DD/Y	YYY			
					CO Change:	

VOC	24-Month Period: MM/DD/	YYYY - MM/DD/Y	YYY			
					VOC Change:	

CO ₂ e	24-Month Period: MM/DD/	YYYY - MM/DD/Y	YYY			
					CO ₂ e Change:	

* Unaffected emissions units are not required to be listed individually. By choosing not to list unaffected emissions units, the applicant asserts that all emissions units not listed in Table 24.A will <u>not</u> be modified or experience an increase in actual annual emissions as part of the proposed project.

24.B. Creditable Contemporaneous Changes – Not applicable

Contemporaneous Period: MM/DD/YYYY – MM/DD/YYYY

		Α	В	С	D	Е	F
Emission Point ID	Description	Date of Modification	Pre-Project Allowables (TPY)	Baseline Actual Emissions (over 24-month period)	24-Month Period	Post-Project Potential to Emit (TPY)	Change

PM2.5				
			PM _{2.5} Change:	
PM ₁₀				

Addendum to November 2022 Application

24.B. Creditable Contemporaneous Changes – Not applicable

PM ₁₀ Chang									
SO ₂									
	SO ₂ Change:								
NOx									
	NO _x Change:								
CO									
						CO Change:			
VOC									
						VOC Change:			
CO ₂ e		[Γ	I					

 For each source identified as "New" or "Modified" in Section 24 A complete the following table for each pollutant that will trigger NSR If LAER is not required per LAC

For each source identified as "New" or "Modified" in Section 24.A, complete the following table for each pollutant that will trigger NSR. If LAER is not required per LAC 33:III.504.D.3, indicate such.

24.C.	BACT/LAER Summary	- Please refer to Part 3.	Table 3-1 of this a	pplication addendum for the BACT summary	/ table.
A-1.0.					

Emission Point ID	Pollutant	BACT/LAER	Limitation	Averaging Period	Description of Control Technology/Work Practice Standard(s)

24.D. PSD Air Quality Analyses Summary

veraging Period our ual our ual	Preliminary Screening Concentration (µg/m ³) 1.01 0.11 1.32	Level of Significant Impact (µg/m ³) 1.2 0.2	Significant Monitoring Concentration (µg/m ³)	Background (µg/m ³) NR	Maximum Modeled Concentration (µg/m ³) NR	Modeled + Background Concentration (µg/m ³)	NAAQS (µg/m ³)	Modeled PSD Increment Consumption (µg/m ³)	Allowable Class II PSD Increment (µg/m ³)
ual our	1.01 0.11	1.2 0.2	(μg/m ³) -				(µg/m ³)		$(\mu g/m^3)$
ual our	0.11	0.2	-	NR	NR				
our						NR	35	NR	9
	1.32		-	NR	NR	NR	12	NR	4
ual		5	10	NR	NR	NR	150	NR	30
uui	0.16	1	-	NR	NR	NR	-	NR	17
ur	NR	7.8	-	NR	NR	NR	195	NR	-
ur	NR	25	-	NR	NR	NR	1300	NR	512
our	NR	5	13	NR	NR	NR	365	NR	91
ual	NR	1	-	NR	NR	NR	80	NR	20
ur	11.86	7.5	-	56.4	117.6	174.0	188	NR	-
ual	0.40	1	14	NR	NR	NR	100	NR	25
ur	1453.56	2000	-	NR	NR	NR	40,000	-	-
ur	441.48	500	575	NR	NR	NR	10,000	-	-
onth	NR	-	0.1	NR	NR	NR	1.5	-	-
	r ur al r al r	r NR ur NR al NR r 11.86 al 0.40 r 1453.56 r 441.48	r NR 25 ur NR 5 al NR 1 r 11.86 7.5 al 0.40 1 r 1453.56 2000 r 441.48 500	r NR 25 - ur NR 5 13 al NR 1 - r 11.86 7.5 - al 0.40 1 14 r 1453.56 2000 - r 441.48 500 575	r NR 25 - NR ur NR 5 13 NR al NR 1 - NR r 11.86 7.5 - 56.4 al 0.40 1 14 NR r 1453.56 2000 - NR r 441.48 500 575 NR	r NR 25 - NR NR ur NR 5 13 NR NR al NR 1 - NR NR r 11.86 7.5 - 56.4 117.6 al 0.40 1 14 NR NR r 1453.56 2000 - NR NR r 441.48 500 575 NR NR	r NR 25 - NR NR NR ur NR 5 13 NR NR NR al NR 1 - NR NR NR r 11.86 7.5 - 56.4 117.6 174.0 al 0.40 1 14 NR NR NR r 1453.56 2000 - NR NR NR r 441.48 500 575 NR NR NR	r NR 25 - NR NR NR 1300 ur NR 5 13 NR NR NR 365 al NR 1 - NR NR NR 80 r 11.86 7.5 - 56.4 117.6 174.0 188 al 0.40 1 14 NR NR NR 100 r 1453.56 2000 - NR NR NR 40,000 r 441.48 500 575 NR NR NR NR	r NR 25 - NR NR NR 1300 NR ur NR 5 13 NR NR NR 365 NR al NR 1 - NR NR NR 80 NR r 11.86 7.5 - 56.4 117.6 174.0 188 NR al 0.40 1 14 NR NR NR 100 NR r 1453.56 2000 - NR NR NR 10,000 - r 441.48 500 575 NR NR NR 10,000 -

	ew Offsets [LAC 33:III.517.D.16, LAC 33:III.504.D.4 & 5] \boxtimes N/A oject triggers Nonattainment New Source Review (NNSR). Ox \square VOC \square SO ₂
NO _X :	
Is the applicant proposing to use internal offs	ets? 🗌 Yes 🔲 No
If not, identify the source of the offsets.	Company:
]	Facility/Unit:
]	Permit No.:
Is an ERC Bank Application included with th	his application, or has an application already been submitted to LDEQ?
If the ERC application has already been subr	nitted, give the date:
Identify the emissions units from which the o	offsets will be obtained (reference specific Emission Point ID numbers).
VOC:	
Is the applicant proposing to use internal offs	ets? Yes No
If not, identify the source of the offsets.	Company:
]	Facility/Unit:
]	Permit No.:
Is an ERC Bank Application included with the Yes No	his application, or has an application already been submitted to LDEQ?
If the ERC application has already been subr	nitted, give the date:
Identify the emissions units from which the o	offsets will be obtained (reference specific Emission Point ID numbers).
SO ₂ :	
Is the applicant proposing to use internal offs	ets? Yes No
If not, identify the source of the offsets.	Company:
]	Facility/Unit:
J	Permit No.:
Is an ERC Bank Application included with the Yes No	nis application, or has an application already been submitted to LDEQ?
If the ERC application has already been subr	nitted, give the date:
Identify the emissions units from which the o	offsets will be obtained (reference specific Emission Point ID numbers).
document should clearly differentiate betwee	the the ERC Bank Application is completed properly. In the case of NO_X , the in ozone season and non-ozone season actual emissions during the baseline reductions are no longer surplus (e.g., due to new or revised federal or state

24.F. Economic Impact

Answer the following questions. How many temporary jobs will be added as a result of this project? How many permanent jobs will be added as a result of this project?

<u>50-100</u> Less than 5

24.G Notification of Federal Land Manager [LAC 33:III.504.E.1, LAC 33:III.509.P.1] Complete this section only if the proposed project triggers NNSR or PSD.

a. Is the proposed facility or modification located within 100 kilon If Yes, determination of Q/d is not required; skip to the next question								
$Q/d = \frac{PM_{10 (NEI)} + SO_{2 (NEI)} + NO_{X (NEI)} + H_2SO_{4 (NEI)}}{Class I km}$ where:	$\begin{array}{l} PM_{10\ (NEI)}\\ SO_{2\ (NEI)}\\ NO_{X\ (NEI)}\\ H_2SO_{4\ (NEI)}\\ Class I\ km \end{array}$	 net emissions increase of PM₁₀^{1,2} net emissions increase of SO₂^{1,2} net emissions increase of NO_X^{1,2} net emissions increase of distance to nearest Class I Area³ 						
$Q/d = \frac{76.38 \text{ tpy} + 6.18 \text{ tpy} + 155.79 \text{ tpy} + 0.04 \text{ tpy}}{185 \text{ km}} = \frac{1.29}{\text{tpy/km}}$								
Per Federal Land Manager guidance, Q values should reflect annual maximum allowable emissions). If $Q/d < 10$, proceed to Section 25 Section.								
b. Has the applicant provided a copy of the application to the Fede	eral Land Man	ager? 🗌 Yes 🗌 No						
c. Does the application contain modeling that demonstrates no adv (AQRVs) in the Class I Area? Yes No	c. Does the application contain modeling that demonstrates no adverse impact on Air Quality Related Values (AQRVs) in the Class I Area? Yes No							
d. If Yes, indicate the model used: VISCREEN PLUVUE	E II 🗌 CAL	PUFF Other: ⁴						
 e. Has the Federal Land Manager concurred that the proposed pro Yes No If Yes, please attach correspondence. 	ject will not ac	lversely impact any AQRVs?						
 ¹If the net emissions increase of any pollutant is negative, enter "0 ²If the project did not trigger a netting analysis, use the project increase pollutant's significance level. ³In kilometers. ⁴Model must be approved by LDEQ and the Federal Land Manager 	rease. In this	case, the value will be less than the						

APPENDIX A EMISSIONS CALCULATIONS

Koch Methanol St. James, LLC KMe Facility Summary of Emissions

Date: 1/26/2023

		Pollutant (tpy)										
Source Description	TEMPO ID	РМ	PM ₁₀	PM _{2.5}	SO2	NO _x	со	voc	CO ₂ e	Ammonia	Methanol	Hydrogen Sulfide
SMR, Boiler, PCS Vent CAP	GRP 0002	73.42	73.42	73.42	5.91	98.56	40.51	31.99	1,335,462	115.63	19.20	-
SMR	EQT 0001	56.29	56.29	56.29	4.53	75.56	27.96	28.26	1,066,245	91.98	17.44	-
Auxiliary Boiler	EQT 0002	17.13	17.13	17.13	1.38	23.00	10.58	3.73	269, 191	21.46	1.76	-
PCS Vent Stream	RLP 0024	-	-	-	-	-	1.97	-	27	2.18	-	-
Flare	EQT 0003	0.16	0.16	0.16	0.10	26.92	110.50	9.87	47,641	-	8.22	-
Emergency Generator	EQT 0004	0.06	0.06	0.06	0.01	1.91	1.05	0.11	208	-	-	-
Firewater Pump No. 1	EQT 0005	0.01	0.01	0.01	0.01	0.20	0.17	0.07	34	-	-	-
Firewater Pump No. 2	EQT 0006	0.01	0.01	0.01	0.01	0.20	0.17	0.07	34	-	-	-
Firewater Pump No. 3	EQT 0022	0.01	0.01	0.01	0.03	0.07	0.02	0.03	14	-	-	-
Cooling Tower	EQT 0007	2.20	1.82	0.84	-	-	4.69	36.79	634	-	36.79	-
Ammonia Tank	EQT 0014	-	-	-	-	-	-	-	-	0.56	-	-
Fugitive Emissions - KMe Facility	FUG 0001	-	-	-	-	-	15.97	43.51	3,306	0.93	38.82	-
Methanol Scrubber Cap	EMS 0001	-	-	-	-	-	-	10.07	2137	-	10.07	-
TK-04001	EQT 0008	-	-	-	-	-	-	4.83	2137	-	4.83	-
TK-04002A	EQT 0013	-	-	-	-	-	-	2.62	-	-	2.62	-
TK-04002B	EQT 0017	-	-	-	-	-	-	2.62	-	-	2.62	-
Wastewater Treatment	FUG 0002	-	-	-	-	-	-	5.53	-	3.29	0.33	9.13
Admin Bldg EGEN	EQT 0026	0.01	0.01	0.01	0.01	0.05	0.09	0.02	9	-	-	-
Gasoline Tank	EQT 0027	-	-	-	-	-	-	0.20	-	-	-	-
Condensate Trap Vents	RLP 0025	-	-	-	-	-	0.07	-	1	0.08	-	-

Koch Methanol St. James, LLC KMe Facility Summary of Emissions

Date: 1/26/2023

		Pollutant (tpy)									-	
Source Description	TEMPO ID	РМ	PM ₁₀	PM _{2.5}	SO2	NO _x	со	voc	CO ₂ e	Ammonia	Methanol	Hydrogen Sulfide
МТРСАР	GRP TBD	0.72	0.72	0.72	0.06	24.09	7.94	27.88	11,282	-	27.29	-
Methanol Product Tank 2301	EQT TBD	-	-	-	-	-	-	2.39	-	-	2.39	-
Methanol Product Tank 2302	EQT TBD	-	-	-	-	-	-	2.31	-	-	2.31	-
Methanol Product Tank 2303	EQT TBD	-	-	-	-	-	-	2.24	-	-	2.24	-
Methanol Product Tank 2304	EQT TBD	-	-	-	-	-	-	2.33	-	-	2.33	-
Terminal Tank Landings and Cleanings	N/A	-	-	-	-	-	-	2.08	-	-	2.08	-
Loading and VCU	EQT TBD	0.72	0.72	0.72	0.06	24.09	7.94	16.37	11,282	-	15.93	-
E.GEN 02	EQT TBD	0.04	0.04	0.04	0.01	1.42	0.14	0.10	167	-	-	-
E.GEN 01	EQT TBD	0.04	0.04	0.04	0.01	1.42	0.14	0.10	167	-	-	-
Insignificant Activities	lAs	0.06	0.06	0.06	0.01	0.77	0.65	0.11	-	-	-	-
GCXVIIs	GC XVII	0.02	0.02	0.02	0.01	0.18	0.98	8.43	-	-	-	-
Facility-Wide Emissi	ons Summary	76.76	76.38	75.40	6.18	155.79	183.08	174.88	1,401,099	120.49	140.72	9.13

Source Description: SMR, Boiler, PCS Vent CAP Source ID No. SMR BLR PCS Vent CAP Tempo ID No. GRP 0002 Calculation Date: 1/26/2023 Calculated by: AHN Reviewed by: MR

Description:

The following table presents the combined average hourly and annual emission limits (CAP) for the Steam Methane Reformer (EPN SMR), Process Condensate Stripper Vent (EPN PCSVENT), and Auxiliary Boiler (EPN BLR). Emissions calculations for each source are provided on the following pages.

Pollutant	Average Emissions (Ib/hr)	Annual Emissions (tpy)
PM/PM ₁₀ /PM _{2.5}	16.76	73.42
VOC	7.30	31.99
SO ₂	1.35	5.91
NO _x	22.50	98.56
со	9.25	40.51
Ammonia	26.40	115.63
Benzene	0.003	0.01
Dichlorobenzene	0.002	0.01
Formaldehyde	0.10	0.44
Hexane	2.39	10.47
Methanol	4.38	19.20
Naphthalene	0.002	0.01
Toluene	0.005	0.02
Arsenic	0.001	0.001
Barium	0.010	0.043
Cadmium	0.003	0.011
Chromium ¹	0.004	0.014
Chromium VI ¹	0.001	0.003
Cobalt	0.001	0.001
Copper	0.002	0.008
Manganese	0.001	0.004
Mercury	0.001	0.003
Nickel	0.005	0.020
Zinc	0.06	0.28
CO ₂ e		1,335,462

Note:

1. Total chromium emissions are estimated for permitting purposes and utilized in comparing facility-wide emission increases to the "chromium VI (and compounds)" minimum emission rate provided in LAC 33:III. Chpater 51. Chromium VI is speciated from total chromium for Environmental Justice (EJ) modeling purposes. Chromium VI is conservatively assumed to be 20% of total chromium based on information provided in Table 4-3, footnote I of the Emissions Estimation Portocol for Petroleum Refineries document (April 2015) for refinery fuel gas.

 Source Description: Steam Methane Reformer (B-01001)
 Calculation Date: 1/26/2023

 Source ID No. SMR
 Calculated by: AHN

 Tempo ID No. EQT 0001
 Reviewed by: MR

Description:

The Steam Methane Reformer will convert natural gas to syngas for conversion to methanol in the methanol synthesis unit. It will be equipped with SCR to control NO_x emissions and oxidation catalyst to control CO/VOC emissions. The emissions presented below include anticipated periods of startup and shutdown. The SMR will operate for brief periods without SCR control/oxidation catalyst, for example during startup and shutdown or SCR maintenance. Maximum hourly emissions and annual emissions account for these periods, as well as periods with operating parameters (e.g. firing rate or fuel heating value) outside of the typical range. Average hourly and annual emissions are accounted for under the SMR, Boiler, PCS Vent CAP (GRP 0002, EPN SMR BLR PCS Vent CAP).

Basis	Units
1,725	MMBtu/hr
1,794	MMBtu/hr
1,020	Btu/scf
8,760	hr/yr
100	hr/yr
15,111,000	MMBtu/yr
99.9	%

Parameter Design Capacity Firing Rate, HHV Maximum Firing Rate Heating Value Annual Operating Hours Hours elevated NOx emissions Annual Average Heat Input Methanol Destruction Efficiency

Source Project Design Basis Project Design Basis AP-42 Table 1.4-2, Footnote a. Based on continuous operation, max hours per year Estimated hours to account for startups, shutdowns, or periods when SCR is not operating. Calculated from Design Capacity Firing Rate (MMBtu/hr) and the Annual Operating Hours (hr/yr). Supported by EPA doc EPA530-R-97-047 (Note 4)

Summary of Criteria Pollutant and Ammonia Emissions:

	Emissio	on Factors	Average	Maximum	Annual	
Pollutant	lb/MMscf (or ppm _v)	lb/MMBtu	Emissions (lb/hr)	Emissions (Ib/hr)	Emissions (tpy)	Emission Factor Source, Notes
NO _x (Annual Operation)		0.01	17.25		75.56	Annual emissions TPY based on 8,760 hr/yr operation at 0.01 lb/MMBTU at design capacity firing rate. Annual emissions and emission factor takes into account controlled and uncontrolled periods of operation.
NO _x (SCR Not Operating)		0.15		269.10		Project Design Basis. 0.15 lb/MMBtu accounts for times when SCR not operating, unit fired above design firing rate, and/or fuel heating value greater than 1,020 Btu/scf.
CO (Annual Operation)	-	0.0037	6.38		27.96	Emission factor based on results of January 2022 stack test, plus contingency to account for catalyst end of run performance, elevated emissions upon SU/SD, and production rate increase. Annual emissions and emission factor takes into account controlled and uncontrolled periods of operation.
CO (Maximum, no catalyst control)		0.0549		98.50		Project Design Basis: 100 ppm CO, max design capacity fire, adjusted to 3% O2
PM/PM ₁₀ /PM _{2.5}	7.6	0.00745	12.85	13.37	56.29	Emission factor selected as BACT; Reference Part 4 in permit application.
voc		0.00374	6.45	6.71	28.26	Emission factor based on results of January 2022 stack test, plus contingency to account for catalyst end of run performance, elevated emissions upon SU/SD, and production rate increase.
SO ₂	0.6	0.0006	1.04	1.08	4.53	AP-42 Table 1.4-2. The conversion to equivalent lb/MMBtu factors is shown for information only.
Ammonia			21.00	24.06	91.98	Emissions based on process knowledge that accounts for SCR end of run performance.

Source Description: Steam Methane Reformer (B-01001) Source ID No. SMR Tempo ID No. EQT 0001 Calculation Date: 1/26/2023 Calculated by: AHN Reviewed by: MR

Summary of Speciated Emissions from Fuel:

Speciated emissions represent maximum potential to emit of each compound.

	Emission	Average	Maximum	Annual				
	Factors ²	Emissions	Emissions	Emissions	EIQ Threshold ¹			
Pollutant	lb/MMscf	(lb/hr)	(lb/hr)	(tpy)	(tpy)	HAP/TAP?	Requires Permitting?	Emission Factor Source
Drganic HAPs			•					
2-Methylnaphthalene	1.66E-05	2.82E-05	2.93E-05	1.23E-04	5.00E-04	YES	NO	AP-42 Table 1.4-3
3-Methylchloranthrene	1.25E-06	2.11E-06	2.20E-06	9.25E-06	5.00E-04	YES	NO	AP-42 Table 1.4-3
7,12-Dimethylbenz(a)nthracene	1.11E-05	1.88E-05	1.95E-05	8.22E-05	5.00E-04	YES	NO	AP-42 Table 1.4-3
Acenaphthene	1.25E-06	2.11E-06	2.20E-06	9.25E-06	5.00E-04	YES	NO	AP-42 Table 1.4-3
Acenaphthylene	1.25E-06	2.11E-06	2.20E-06	9.25E-06	5.00E-04	YES	NO	AP-42 Table 1.4-3
Anthracene	1.66E-06	2.82E-06	2.93E-06	1.23E-05	5.00E-04	YES	NO	AP-42 Table 1.4-3
Benz(a)thracene	1.25E-06	2.11E-06	2.20E-06	9.25E-06	5.00E-04	YES	NO	AP-42 Table 1.4-3
Benzene	1.46E-03	2.46E-03	2.56E-03	1.08E-02	5.00E-04	YES	YES	AP-42 Table 1.4-3
Benzo(a)pyrene	8.32E-07	1.41E-06	1.46E-06	6.17E-06	5.00E-04	YES	NO	AP-42 Table 1.4-3
Benzo(b)fluoranthene	1.25E-06	2.11E-06	2.20E-06	9.25E-06	5.00E-04	YES	NO	AP-42 Table 1.4-3
Benzo(g,h,i)perylene	8.32E-07	1.41E-06	1.46E-06	6.17E-06	5.00E-04	YES	NO	AP-42 Table 1.4-3
Benzo(k)fluoranthene	1.25E-06	2.11E-06	2.20E-06	9.25E-06	5.00E-04	YES	NO	AP-42 Table 1.4-3
Butane	1.46E+00	2.46E+00	2.56E+00	1.08E+01	5.00E-04	NO	NO	AP-42 Table 1.4-3
Chrysene	1.25E-06	2.11E-06	2.20E-06	9.25E-06	5.00E-04	YES	NO	AP-42 Table 1.4-3
Dibenzo(a,h)anthracene	8.32E-07	1.41E-06	1.46E-06	6.17E-06	5.00E-04	YES	NO	AP-42 Table 1.4-3
Dichlorobenzene	8.32E-04	1.41E-03	1.46E-03	6.17E-03	5.00E-04	YES	YES	AP-42 Table 1.4-3
Ethane	2.15E+00	3.64E+00	3.78E+00	1.59E+01	5.00E-04	NO	NO	AP-42 Table 1.4-3
Fluoranthene	2.08E-06	3.52E-06	3.66E-06	1.54E-05	5.00E-04	YES	NO	AP-42 Table 1.4-3
Fluorene	1.94E-06	3.28E-06	3.42E-06	1.44E-05	5.00E-04	YES	NO	AP-42 Table 1.4-3
Formaldehyde	5.20E-02	8.80E-02	9.15E-02	3.85E-01	5.00E-04	YES	YES	AP-42 Table 1.4-3
n-Hexane	1.25E+00	2.11E+00	2.20E+00	9.25E+00	5.00E-04	YES	YES	AP-42 Table 1.4-3
Indeno(1,2,3-cd)pyrene	1.25E-06	2.11E-06	2.20E-06	9.25E-06	5.00E-04	YES	NO	AP-42 Table 1.4-3
Methanol ³	2.35E+00	3.98E+00	4.98E+00	1.74E+01	5.00E-04	YES	YES	Note 3
Naphthalene	4.23E-04	7.16E-04	7.44E-04	3.13E-03	5.00E-04	YES	YES	AP-42 Table 1.4-3
Pentane	1.80E+00	3.05E+00	3.17E+00	1.34E+01	5.00E-04	NO	NO	AP-42 Table 1.4-3
Phenanathrene	1.18E-05	1.99E-05	2.07E-05	8.73E-05	5.00E-04	YES	NO	AP-42 Table 1.4-3
Propane	1.11E+00	1.88E+00	1.95E+00	8.22E+00	5.00E-04	NO	NO	AP-42 Table 1.4-3
Pyrene	3.47E-06	5.87E-06	6.10E-06	2.57E-05	5.00E-04	YES	NO	AP-42 Table 1.4-3
Toluene	2.36E-03	3.99E-03	4.15E-03	1.75E-02	5.00E-04	YES	YES	AP-42 Table 1.4-3
Total PAH		7.53E-05	7.83E-05	3.30E-04	5.00E-04	YES	NO	
Total HAP		6.19	7.27	27.11				

Koch Methanol St. James, LLC KMe Facility Steam Methane Reformer Emission Calculations

SOURCE INFORMATION									
Source Description: Steam Methane Reformer (B-01001)					Calculation Date: 1/26/2023				
Source ID No.	Source ID No. SMR				Calculated by: AHN				
Tempo ID No.	. EQT 0001				Reviewed by:	MR			
	Emission	Average	Maximum	Annual					
	Factors ²	Emissions	Emissions	Emissions	EIQ Threshold ¹				
Pollutant	lb/MMscf	(lb/hr)	(lb/hr)	(tpy)	(tpy)	HAP/TAP?	Requires Permitting?	Emission Factor Source	
Metals									
Arsenic	2.00E-04	3.38E-04	3.52E-04	1.48E-03	5.00E-04	YES	YES	AP-42 Table 1.4-4	
Barium	4.40E-03	7.44E-03	7.74E-03	3.26E-02	5.00E-04	YES	YES	AP-42 Table 1.4-4	
Beryllium	1.20E-05	2.03E-05	2.11E-05	8.89E-05	5.00E-04	YES	NO	AP-42 Table 1.4-4	
Cadmium	1.10E-03	1.86E-03	1.93E-03	8.15E-03	5.00E-04	YES	YES	AP-42 Table 1.4-4	
Chromium	1.40E-03	2.37E-03	2.46E-03	1.04E-02	5.00E-04	YES	YES	AP-42 Table 1.4-4, Note 5	
Chromium VI		4.74E-04	4.92E-04	2.07E-03	5.00E-04	NO	NO	Note 5	
Cobalt	8.40E-05	1.42E-04	1.48E-04	6.22E-04	5.00E-04	YES	YES	AP-42 Table 1.4-4	
Copper	8.50E-04	1.44E-03	1.50E-03	6.30E-03	5.00E-04	YES	YES	AP-42 Table 1.4-4	
Manganese	3.80E-04	6.43E-04	6.68E-04	2.81E-03	5.00E-04	YES	YES	AP-42 Table 1.4-4	
Mercury	2.60E-04	4.40E-04	4.57E-04	1.93E-03	5.00E-04	YES	YES	AP-42 Table 1.4-4	
Molybdenum	1.10E-03	1.86E-03	1.93E-03	8.15E-03	5.00E-04	NO	NO	AP-42 Table 1.4-4	
Nickel	2.10E-03	3.55E-03	3.69E-03	1.56E-02	5.00E-04	YES	YES	AP-42 Table 1.4-4	
Selenium	2.40E-05	4.06E-05	4.22E-05	1.78E-04	5.00E-04	YES	NO	AP-42 Table 1.4-4	
Vanadium	2.30E-03	3.89E-03	4.05E-03	1.70E-02	5.00E-04	NO	NO	AP-42 Table 1.4-4	
Zinc	2.90E-02	4.90E-02	5.10E-02	2.15E-01	5.00E-04	YES	YES	AP-42 Table 1.4-4	

Notes

1. Emissions less than permitting thresholds of 0.0005 tpy will not be included in the permit or EIQ sheets.

2. Emission factors for speciated organic HAP/TAPs are based on AP-42 Table 1.4-3 and ratioed down based on ratio of PTE emission factor to the AP-42 VOC emission factor. Emission factors for metals are based on AP-42 Table 1.4-4.

3. Methanol emissions are based on an anticipated methanol mass flow rate and 99.9% destruction efficiency. The maximum hourly emission rates are based on the average hourly emission rates plus a 25% contingency.

4. EPA520-R-97-047 document references 99.99% and 99.9999% destruction efficiencies for "methane reforming furnaces". This application assumes 99.9% DRE.

5. Total chromium emissions are estimated for permitting purposes and utilized in comparing facility-wide emission increases to the "chromium VI (and compounds)" minimum emission rate provided in LAC 33:III. Chpater 51. Chromium VI is speciated from total chromium for Environmental Justice (EJ) modeling purposes. Chromium VI is conservatively assumed to be 20% of total chromium based on information provided in Table 4-3, footnote I of the Emissions Estimation Portocol for Petroleum Refineries document (April 2015) for refinery fuel gas.

Sample Calculations

CO emission factor calculation basis :

- 5 ppmv CO, average dry basis, adjusted to 3% O_2
- 100 ppmv CO, maximum dry basis, adjusted to 3% O₂
- 385 scf/lb-mol, standard molar volume based on definition of standard conditions in 40 CFR 60 Subpart A (68°F and 14.7 psia)
- 28 lb/lb-mol, CO molecular weight
- 454,822 acfm (wet basis), stack flow rate
- 23.77 %, stack gas moisture content
- 351 °F, stack gas temperature
- 225,725 dscfm (dry), stack gas flow rate
- 4.92 lb/hr, CO avg emission rate
- 98.50 lb/hr, CO max emission rate
- 0.055 lb/MMBtu, CO max emission factor

Source Description:	Steam Methane Reformer (B-01001)
Source ID No.	SMR
Tempo ID No.	FOT 0001

Maximum percentage of methanol in streams calculation basis :

Speciation of Off Gas from Distillation Stream					
Pollutant	Mol %	Molecular Weight			
Methanol (VOC)	19.28	32			
CO ₂	69.92	44			
CO	0.19	28			
H ₂	2.01	2			
Ar	0.09	40			
N ₂	0.04	28			
Methane	5.51	16			
Low Boiler	2.96				
Total	100				

CO₂ emissions from streams calculation basis:

	CO ₂ Post		
	Combustion	CO ₂ PTE	CO ₂ PTE
Fuel Types	Combined Flow	Emissions (lb/hr) ⁶	Emissions (tpy)
Natural Gas	776,463	108,087	473,420
Purge gas from synthesis loop	438,007	60,972	267,059
PSA tail gas	270,678	37,679	165,036
Expansion gas	136,098	18,945	82,981
Off gas from distillation	126,022	17,543	76,837
Total	1,747,269	243,227	1,065,332

Notes:

5. Includes both combustion related CO₂ and pass through CO₂ from each SMR furnace fuel stream via process engineering mass balance.

6. CO₂ PTE Emissions(lb/hr) = CO₂ post-combustion combined flow rate (scf/hr) x 379.3 scf/lb-mol * MW CO₂ (44 lb/lb-mol) * 1.2. An engineering judgement factor of 20% was applied to cover a reasonable range of outcomes, potential for feed/fuel gas variability, and recognizing the limitations in precision of the CEMS stack flow meter and CO₂ analyzer within EPA's performance specifications tolerance range.

Calculation Date: 1/26/2023

Calculated by: AHN Reviewed by: MR

SOURCE INFORMATION		
Source Description: Steam Methane Reformer (B-01001)	Calculation Date: 1/26/2023	
Source ID No. SMR	Calculated by: AHN	
Tempo ID No. EQT 0001	Reviewed by: MR	

Summary of GHG Emissions:

	Emission		
	Factor	Emissions	Emissions
Pollutant	(kg/MMBtu) ⁷	(metric tons/yr) ⁸	(US tons/yr) ⁹
CO2	Eng calc above	966,726	1,065,332
CH₄	1.0E-03	15.11	16.65
N ₂ O	1.0E-04	1.51	1.67
CO ₂ e ¹⁰		967,554	1,066,245

Notes

7. Based on EPA default factors in Subpart C Tables C-1 and C-2 for natural gas, rev. 11/29/2013.

8. Calculated based on the heat input, emission factors, and equations C-1b and C-8b of Subpart C. CO₂e based on Subpart A Table A-1 factors. 9. 1 metric ton = 1.102 US ton

10. CO₂e = CO₂, CH₄, or N₂O (tpy) * Global Warming Potential factor (GWP). GWPs from 40 CFR 98 Subpart A, Table A-1, rev. 11/29/2013.

CO ₂ GWP	1
CH_4 GWP	25
N ₂ O GWP	298

SOURCE INFORMATION	
Source Description: Auxiliary Boiler (B-14001)	Calculation Date: 1/26/2023
Source ID No. BLR	Calculated by: AHN
Tempo ID No. EQT 0002	Reviewed by: MR

Description:

The auxiliary boiler is fired on natural gas and provides steam for the Steam Methane Reformer and process. Firing rate is dependent on stage in life cycle of methanol synthesis catalyst in the Plant. Boiler will be equipped with SCR to control NO_x emissions and oxidation catalyst to control CO/VOC emissions. The emissions presented below include anticipated periods of startup and shutdown. The boiler will operate for brief periods without SCR control/oxidation catalyst, for example during startup and shutdown or SCR maintenance. Maximum hourly emissions and annual emissions account for these periods, as well as periods with operating parameters (e.g. firing rate or fuel heating value) outside of the typical range. Average hourly and annual emissions are accounted for under the SMR, Boiler, PCS Vent CAP (GRP 0002, EPN SMR BLR PCS Vent CAP).

Basis Units	Parameter	Source
525 MMBtu/hr	Max Annual Average Firing Rate, HHV	Project Design Basis. Normal operating base load is 262.5 MMBtu/hr (30%). This max annual average allows for up to 42.5% of annual hours to be at 100% load if remaining hours are at base load (i.e., annual average emissions based on two times the anticipated base load operation).
1100 MMBtu/hr	Design Maximum Firing Rate, HHV	Project Design Basis; Used to estimate maximum hourly emission rate.
1,020 Btu/scf	Natural Gas High Heating Value	AP-42 Table 1.4-2, Footnote a.
8,760 hr/yr	Annual Operating Hours	Based on continuous operation, max hours per year
100 hr/yr	Hours elevated NOx emissions	Estimated hours to account for startups, shutdowns, or periods when SCR is not operating.
0.51 MMscf/hr	Natural Gas Feed	Calculated from Average Firing Rate (MMBtu/hr) and Heating Value (Btu/scf).
385.00 scf/lb-mol	Standard Molar Volume	Ideal Gas Law
4,599,000 MMBtu/yr	Annual Average Heat Input	Calculated from Design Capacity Firing Rate (MMBtu/hr) and the Annual Operating Hours (hr/yr).
99.9 %	Destruction Efficiency	Supported by EPA doc EPA530-R-97-047 (Note 9)
17,398 lb/hr	Purge gas fired	Project design basis.
210,010 acfm	Stack flow rate, wet basis	Project Design Basis

KMe Facility Auxiliary Boiler Emission Calculations

SOURCE INFORMATION

RAMBOLL

Source Description: Auxiliary Boiler (B-14001) Source ID No. BLR Tempo ID No. EQT 0002

Summary of Criteria Pollutant and Ammonia Emissions:

	Emiss Ib/MMscf	ion Factors	Average Emissions	Maximum Emissions	Annual Emissions	Emission Factor Source
Pollutant	(or ppm _v)	lb/MMBtu	(lb/hr)	(lb/hr)	(tpy)	
NO _x (Annual Operation)		0.01	5.25		23.00	Annual emissions TPY based on 8,760 hr/yr operation at 0.01 lb/MMBTU at design capacity firing rate. Annual emissions and emission factor takes into account controlled and uncontrolled periods of operation.
NO _x (SCR Not Operating)		0.10		108.90		Project Design Basis. 0.10 lb/MMBtu (0.09 lb/MMBTU plus 10% contingency) at normal firing rates with SCR offline due to planned maintenance or equipment malfunction.
CO (Annual Operation)		0.0046	2.42		10.58	Emission factor based on results of November 2021 stack test, plus contingency to account for catalyst end of run performance, elevated emissions upon SU/SD, and production rate increase. Annual emissions and emission factor takes into account controlled and uncontrolled periods of operation.
CO (Maximum, no catalyst control)		0.0437		48.02		Project Design Basis: 100 ppm CO, max design capacity fire, adjusted to 3% O2
PM/PM ₁₀ /PM _{2.5}	7.6	0.00745	3.91	8.20	17.13	Emission factor selected as BACT; Reference Part 4 in permit application.
VOC (Average, with Catalyst)		0.0016	0.85		3.73	Emission factor based on results of November 2021 stack test, plus contingency to account for catalyst end of run performance, elevated emissions upon SU/SD, and production rate increase.
VOC (Maximum)		0.0054		5.94		Based on AP-42, Table 1.4-2.
SO ₂	0.6	0.0006	0.32	0.66	1.38	AP-42 Table 1.4-2. The conversion to equivalent lb/MMBtu factors is shown for information only.
Ammonia			4.90	10.21	21.46	Emissions based on process knowledge that accounts for SCR end of run performance.

SOURCE INFORMATION

Source Description: Auxiliary Boiler (B-14001) Source ID No. BLR Tempo ID No. EQT 0002 Calculation Date: 1/26/2023 Calculated by: AHN Reviewed by: MR

Summary of Speciated Emissions from Natural Gas Combustion:

Speciated emissions represent maximum potential to emit of each compound.

	Emission Factors	Average	Maximum	Annual Emissions	EIQ Threshold ¹		Requires	
Pollutant	Ib/MMscf		Emissions (lb/hr)	(tpy)	(tpy)	HAP/TAP?	Permitting?	Emission Factor Source
2-Methylnaphthalene	7.21E-06	3.71E-06	7.78E-06	1.63E-05	5.00E-04	YES	NO	AP-42 Table 1.4-3
3-Methylchloranthrene	5.41E-07	2.78E-07	5.83E-07	1.22E-06	5.00E-04	YES	NO	AP-42 Table 1.4-3
7,12 - Dimethylbenz(a)nthracene	4.81E-06	2.47E-06	5.18E-06	1.08E-05	5.00E-04	YES	NO	AP-42 Table 1.4-3
Acenaphthene	5.41E-07	2.78E-07	5.83E-07	1.22E-06	5.00E-04	YES	NO	AP-42 Table 1.4-3
Acenaphthylene	5.41E-07	2.78E-07	5.83E-07	1.22E-06	5.00E-04	YES	NO	AP-42 Table 1.4-3
Anthracene	7.21E-07	3.71E-07	7.78E-07	1.63E-06	5.00E-04	YES	NO	AP-42 Table 1.4-3
Benz(a)thracene	5.41E-07	2.78E-07	5.83E-07	1.22E-06	5.00E-04	YES	NO	AP-42 Table 1.4-3
Benzene	6.31E-04	3.25E-04	6.80E-04	1.42E-03	5.00E-04	YES	YES	AP-42 Table 1.4-3
Benzo(a)pyrene	3.61E-07	1.86E-07	3.89E-07	8.13E-07	5.00E-04	YES	NO	AP-42 Table 1.4-3
Benzo(b)fluoranthene	5.41E-07	2.78E-07	5.83E-07	1.22E-06	5.00E-04	YES	NO	AP-42 Table 1.4-3
Benzo(g,h,i)perylene	3.61E-07	1.86E-07	3.89E-07	8.13E-07	5.00E-04	YES	NO	AP-42 Table 1.4-3
Benzo(k)fluoranthene	5.41E-07	2.78E-07	5.83E-07	1.22E-06	5.00E-04	YES	NO	AP-42 Table 1.4-3
Butane	6.31E-01	3.25E-01	6.80E-01	1.42E+00	5.00E-04	NO	NO	AP-42 Table 1.4-3
Chrysene	5.41E-07	2.78E-07	5.83E-07	1.22E-06	5.00E-04	YES	NO	AP-42 Table 1.4-3
Dibenzo(a,h)anthracene	3.61E-07	1.86E-07	3.89E-07	8.13E-07	5.00E-04	YES	NO	AP-42 Table 1.4-3
Dichlorobenzene	3.61E-04	2.00E-04	4.00E-04	8.76E-04	5.00E-04	YES	YES	AP-42 Table 1.4-3
Ethane	9.31E-01	4.79E-01	1.00E+00	2.10E+00	5.00E-04	NO	NO	AP-42 Table 1.4-3
Fluoranthene	9.01E-07	4.64E-07	9.72E-07	2.03E-06	5.00E-04	YES	NO	AP-42 Table 1.4-3
Fluorene	8.41E-07	4.33E-07	9.07E-07	1.90E-06	5.00E-04	YES	NO	AP-42 Table 1.4-3
Formaldehyde	2.25E-02	1.16E-02	2.43E-02	5.08E-02	5.00E-04	YES	YES	AP-42 Table 1.4-3
n-Hexane	5.41E-01	2.78E-01	5.83E-01	1.22E+00	5.00E-04	YES	YES	AP-42 Table 1.4-3
Indeno(1,2,3-cd)pyrene	5.41E-07	2.78E-07	5.83E-07	1.22E-06	5.00E-04	YES	NO	AP-42 Table 1.4-3
Methanol ³	7.82E-01	4.02E-01	8.43E-01	1.76E+00	5.00E-04	YES	YES	Note 3
Naphthalene	1.83E-04	9.43E-05	1.98E-04	4.13E-04	5.00E-04	YES	NO	AP-42 Table 1.4-3
Pentane	7.81E-01	4.02E-01	8.42E-01	1.76E+00	5.00E-04	NO	NO	AP-42 Table 1.4-3
Phenanathrene	5.11E-06	2.63E-06	5.51E-06	1.15E-05	5.00E-04	YES	NO	AP-42 Table 1.4-3
Propane	4.81E-01	2.47E-01	5.18E-01	1.08E+00	5.00E-04	NO	NO	AP-42 Table 1.4-3
Pyrene	1.50E-06	7.73E-07	1.62E-06	3.39E-06	5.00E-04	YES	NO	AP-42 Table 1.4-3
Toluene	1.02E-03	5.26E-04	1.10E-03	2.30E-03	5.00E-04	YES	YES	AP-42 Table 1.4-3
Total PAH		9.93E-06	2.08E-05	4.35E-05	5.00E-04	YES	NO	
Total HAP		0.69	1.45	3.04				

SOURCE INFORMATION

Source Description: Auxiliary Boiler (B-14001) Source ID No. BLR Tempo ID No. EQT 0002 Calculation Date: 1/26/2023 Calculated by: AHN Reviewed by: MR

	Emission			Annual				
	Factors	Average	Maximum	Emissions	EIQ Threshold ¹		Requires	
Pollutant	lb/MMscf	Emissions (lb/hr)	Emissions (lb/hr)	(tpy)	(tpy)	HAP/TAP?	Permitting?	Emission Factor Source
Metals								
Arsenic	2.00E-04	1.03E-04	2.16E-04	4.51E-04	5.00E-04	YES	NO	AP-42 Table 1.4-4
Barium	4.40E-03	2.26E-03	4.75E-03	9.92E-03	5.00E-04	YES	YES	AP-42 Table 1.4-4
Beryllium	1.20E-05	6.18E-06	1.29E-05	2.71E-05	5.00E-04	YES	NO	AP-42 Table 1.4-4
Cadmium	1.10E-03	5.66E-04	1.19E-03	2.48E-03	5.00E-04	YES	YES	AP-42 Table 1.4-4
Chromium	1.40E-03	7.21E-04	1.51E-03	3.16E-03	5.00E-04	YES	YES	AP-42 Table 1.4-4, Note 4
Chromium VI		1.44E-04	3.02E-04	6.31E-04	5.00E-04	NO	NO	Note 4
Cobalt	8.40E-05	4.32E-05	9.06E-05	1.89E-04	5.00E-04	YES	NO	AP-42 Table 1.4-4
Copper	8.50E-04	4.38E-04	9.17E-04	1.92E-03	5.00E-04	YES	YES	AP-42 Table 1.4-4
Manganese	3.80E-04	1.96E-04	4.10E-04	8.57E-04	5.00E-04	YES	YES	AP-42 Table 1.4-4
Mercury	2.60E-04	1.34E-04	2.80E-04	5.86E-04	5.00E-04	YES	YES	AP-42 Table 1.4-4
Molybdenum	1.10E-03	5.66E-04	1.19E-03	2.48E-03	5.00E-04	NO	NO	AP-42 Table 1.4-4
Nickel	2.10E-03	1.08E-03	2.26E-03	4.73E-03	5.00E-04	YES	YES	AP-42 Table 1.4-4
Selenium	2.40E-05	1.24E-05	2.59E-05	5.41E-05	5.00E-04	YES	NO	AP-42 Table 1.4-4
Vanadium	2.30E-03	1.18E-03	2.48E-03	5.19E-03	5.00E-04	NO	NO	AP-42 Table 1.4-4
Zinc	2.90E-02	1.49E-02	3.13E-02	6.54E-02	5.00E-04	YES	YES	AP-42 Table 1.4-4

SOURCE INFORMATION

Source Description: Auxiliary Boiler (B-14001) Source ID No. BLR Tempo ID No. EQT 0002 Calculation Date: 1/26/2023 Calculated by: AHN Reviewed by: MR

Maximum percentage of methanol in streams calculation basis:

Speciation of Purge Gas Stream						
Pollutant	Mol %	Molecular Weight	Mass (lb)	Mass %		
Methanol (VOC)	0.55	32	0.18	2.1		
CO ₂	6.98	44	3.07	36.7		
CO	1.84	28	0.52	6.2		
H ₂	72.54	2	1.45	17.3		
Ar	0.70	40	0.28	3.3		
N ₂	0.78	28	0.22	2.6		
Methane	16.57	16	2.65	31.7		
H ₂ O	0.04	18	0.01	0.1		
Low Boiler	0.00					
Total	100		8.37	100		

Summary of GHG Emissions:

Fuel Combustion (40 CFR 98 Subpart C)

	Emission		
	Factor	Emissions	Emissions
Pollutant	(kg/MMBtu) ⁵	(metric tons/yr) ⁶	(US tons/yr) ⁷
CO2	53.06	244,022.94	268,913.28
CH₄	1.0E-03	4.60	5.07
N ₂ O	1.0E-04	0.46	0.51
CO ₂ e ⁸		244,274.97	269,191

SOURCE INFORMATION	
Source Description: Auxiliary Boiler (B-14001)	Calculation Date: 1/26/2023
Source ID No. BLR	Calculated by: AHN
Tempo ID No. EQT 0002	Reviewed by: MR

Notes:

1. Emissions less than permitting thresholds of 0.0005 tpy will not be included in the permit or EIQ sheets.

2. Emission factors for speciated organic HAP/TAPs are based on AP-42 Table 1.4-3 and ratioed down based on the VOC emissions from 30% vendor guarantee (without oxidation catalyst) and supported by the November 2021 performance test. Emission factors for metals are based on AP-42 Table 1.4-4.

3. Methanol emissions are based on the percentage of methanol in purge gas, a purge gas flow rate (13,918 lb/hr), and 99.9% destruction efficiency. The maximum hourly emission rates are estimated from the average hourly emission rates ratioed up based on the average and maximum firing rates.

4. Total chromium emissions are estimated for permitting purposes and utilized in comparing facility-wide emission increases to the "chromium VI (and compounds)" minimum emission rate provided in LAC 33:III. Chpater 51. Chromium VI is speciated from total chromium for Environmental Justice (EJ) modeling purposes. Chromium VI is conservatively assumed to be 20% of total chromium based on information provided in Table 4-3, footnote I of the Emissions Estimation Portocol for Petroleum Refineries document (April 2015) for refinery fuel gas.

5. Based on EPA default factors in Subpart C Tables C-1 and C-2 for natural gas, rev. 11/29/2013.

6. Calculated based on the heat input, emission factors, and equations C-1b and C-8b of Subpart C. CO₂e based on Subpart A Table A-1 factors.

CO₂, CH₄, or N₂O (metric tpy) = 1E-03 * Gas (MMBtu/yr) * Emission Factor (kg/MMBtu)

7. 1 metric ton = 1.102 US ton

8. CO₂e = CO₂, CH₄, or N₂O (tpy) * Global Warming Potential factor (GWP). GWPs from 40 CFR 98 Subpart A, Table A-1, rev. 11/29/2013.

CO ₂ GWP	1
CH_4 GWP	25
N ₂ O GWP	298

9. EPA520-R-97-047 document references 99.99% and 99.9999% destruction efficiencies for "methane reforming furnaces". This application assumes 99.9% DRE.

CO emission factor calculation basis:

10 ppm_v CO (dry @ stack gas O₂), average dry basis

100 ppm_v CO (dry @ stack gas O2), maximum dry basis

385 scf/lb-mol, standard molar volume based on definition of standard conditions in 40 CFR 60 Subpart A (68°F and 14.7 psia)

28 lb/lb-mol, CO molecular weight

210,010 acfm (wet basis), stack flow rate

17.23 %, stack gas moisture content

374 °F, stack gas temperature

110,048 dscfm (dry), stack gas flow rate

4.80 lb/hr, CO avg emission rate

48.02 lb/hr, CO max emission rate

0.044 lb/MMBtu hr, CO max emission rate

Source Description: Process Condensate Stripper Vent	Calculation Date: 7/14/2022	
Source ID No. PCSVENT	Calculated by: MO	
Tempo ID No. RLP 0024	Reviewed by: AG	

Description:

The site has a Process Condensate Stripper that generates offgas that is routed to the Steam Methane Reformer for destruction during normal operations. It diverts to atmosphere during process unit upsets and during startups. The gas is primarily steam, with trace quantities of other components. The stream composition is based on a facility mass balance and engineering judgement. For the purposes of this estimate, it is assumed that venting will occur 100 hours per year. Average hourly and annual emissions are accounted for under the SMR, Boiler, PCS Vent CAP (GRP 0002, EPN SMR BLR PCS Vent CAP).

Annual Operating Hours

100 hr/yr

Pollutant	Hourly Emissions (Ib/hr)	Annual Emissions (tpy)
CO	39.38	1.97
CO ₂	480.24	24.01
CH ₄	2	0.10
CO ₂ e ¹		26.51
H ₂	12.25	0.61
NH ₃	43.69	2.18
H ₂ O	34,803	1,740
Ar	0.2	0.01
N ₂	0.1	0.005

Notes:

1. CO₂e = CO₂ or CH₄ (tpy) * Global Warming Potential factor (GWP). GWPs from 40 CFR 98 Subpart A, Table A-1, rev. 11/29/2013.

CO₂ GWP 1 CH₄ GWP 25

SOURCE INFORMATION	
Source Description: Flare	Calculation Date: 1/26/2023
Source ID No. FLR	Calculated by: AHN
Tempo ID No. EQT 0003	Reviewed by: MR

Description:

Below is a summary of emissions for the flare associated with the flare pilot, routine flaring, and flaring from startups/shutdowns. Detailed emission calculations for each of these categories are calculated separately.

Emissions Summary:

	Em	issions per Strear	n	Total Emissions		
Pollutant	Pilot (tpy)	Routine Flaring (tpy)	SUSD (tpy)	Average Emissions (lb/hr)	Maximum Emissions (Ib/hr)	Annual Emissions (tpy)
СО	0.28	28.51	81.71	25.23	2,170.00	110.50
NO _x	0.33	6.88	19.72	6.15	523.60	26.92
PM/PM ₁₀ /PM _{2.5}	0.02	0.04	0.09	0.04	2.50	0.16
SO ₂	0.003	0.08	0.01	0.02	0.67	0.10
VOC	0.02	0.82	9.03	2.25	11,056.44	9.87
Methanol		0.82	7.39	1.88	11,056.44	8.22
Benzene	4.66E-06	2.08E-04	5.92E-04	1.84E-04	0.06	8.05E-04
Formaldehyde	1.67E-04	7.44E-03	2.11E-02	6.56E-03	2.02	2.87E-02
n-Hexane	4.00E-03	1.79E-01	5.07E-01	1.57E-01	48.38	6.90E-01
Toluene	7.55E-06	3.37E-04	9.58E-04	2.97E-04	0.09	1.30E-03
Barium	9.77E-06	4.36E-04	1.24E-03	3.85E-04	0.118	1.69E-03
Chromium ¹	3.11E-06	1.39E-04	3.94E-04	1.22E-04	0.038	5.36E-04
Chromium VI ¹	6.22E-07	2.78E-05	7.89E-05	2.45E-05	0.008	1.07E-04
Nickel	4.66E-06	2.08E-04	5.92E-04	1.84E-04	0.056	8.05E-04
Zinc	6.44E-05	2.88E-03	8.17E-03	2.54E-03	0.779	1.11E-02
CO ₂ e	265	13,213	34,162			47,641
Note:						

Note:

1. Total chromium emissions are estimated for permitting purposes and utilized in comparing facility-wide emission increases to the "chromium VI (and compounds)" minimum emission rate provided in LAC 33:III. Chpater 51. Chromium VI is speciated from total chromium for Environmental Justice (EJ) modeling purposes. Chromium VI is conservatively assumed to be 20% of total chromium based on information provided in Table 4-3, footnote I of the Emissions Estimation Portocol for Petroleum Refineries document (April 2015) for refinery fuel gas.

Calculation Date: 1/26/2023 Calculated by: AHN Reviewed by: MR

SOURCE INFORMATION

Source Description: Flare (Pilot) Source ID No. FLR Tempo ID No. EQT 0003

Description:

Pilot emissions from the combustion of natural gas to the flare are estimated below.

Basis Unit	Parameter	Source
1,020 Btu/scf	Heating Value	EPA AP-42 Section 1.4: Natural Gas Combustion
0.47 MMBtu/hr 750 scfh	Heat Input (LHV) Fuel Flow	Process Design Basis Based on Actual Flare Data provided by Koch 8/11/2022 and engineering judgement
8,760 hours/yr	Operating Time	Based on continuous operation, max hours per year
4,117 MMBtu/yr	Annual Average Heat Input	Calculated from Heat Input (MMBtu/hr) and the Annual Operating Hours (hr/yr).

Emissions Summary:

Component	Emissio	n factor	Hourly Emissions (Ib/hr)	Annual Emissions (tpy)	Emission Factor Source
NO _x	100	lb/MMscf	0.08	0.33	AP-42 Table 1.4-1
CO	84	lb/MMscf	0.06	0.28	AP-42 Table 1.4-1
PM/PM ₁₀ /PM _{2.5}	7.6	lb/MMscf	5.70E-03	0.02	AP-42 Table 1.4-2. All PM (total, condensable, and filterable) is assumed to be less than 1.0 micrometer in diameter.
SO ₂	0.9	lb/MMscf	6.74E-04	2.95E-03	5 ppmv (2,995 grains/MMscf) of total Sulfur in fuel gas. Emission factor is a ratioed up from AP-42 Table 1.4-2 (2,000 grains/MMscf basis).
VOC	5.5	lb/MMscf	0.004	0.02	AP-42 Table 1.4-2

GHG Emission Calculation Basis:

4,529 Annual Average Heat Input (MMBtu/yr) (HHV)

Summary of GHG Emissions:

Fuel Combustion (40 CFR 98 Subpart C)

Pollutant	Emission Factor (kg/MMBtu) ¹	Emissions (metric tons/yr) ²	Emissions (US tons/yr) ³
CO ₂	53.06	240.30	264.82
CH₄	1.0E-03	0.0045	0.0050
N ₂ O	1.0E-04	0.0005	0.0005
CO ₂ e ⁴		240.55	265

Notes

1. Based on EPA default factors in Subpart C Tables C-1 and C-2 for natural gas, revised 11/29/2013.

2. Calculated based on the heat input, emission factors, and equations C-1b and C-8b of Subpart C. CO2e based on Subpart A Table A-1 factors.

CO₂, CH₄, or N₂O (metric tpy) = 1E-03 * Gas (MMBtu/yr) * Emission Factor (kg/MMBtu)

3. 1 metric ton = 1.102 US ton

4. CO₂e = CO₂, CH₄, or N₂O (tpy) * Global Warming Potential factor (GWP). GWPs revised 11/29/2013.

CO ₂ GWP	1
CH_4 GWP	25

N ₂ O GWP	298

Calculation Date: 1/26/2023 Calculated by: JLS Reviewed by: AHN

SOURCE INFORMATION

	Source Description: Flare (Routine Flaring)
	Source ID No. FLR
	Tempo ID No. EQT 0003
Description:	

Description:

The flare design includes a continuous flow of natural gas and nitrogen as a purge stream to the flare. Additionally, the flare will control emissions from the methanol slop vessel and other routine/intermittent streams.

Stream Data

Parameter	Units	Value	Source
Duration	hr/yr	8,760	
Molweight	lb/lbmol	17	Based on actual flare data, natural gas basis
Flow rate (total)	scf/hr	70,000	Based on actual flare data
Flow rate (natural gas)	scf/hr	21,000	Based on actual flare data, natural gas basis
Lower Heating Value (LHV)	Btu/scf	1,000	Based on actual flare data, natural gas basis
Firing Rate (LHV)	MMBtu/hr	21.00	Calculated from Flow rate (scf/hr) and LHV (Btu/scf).
Firing Rate (HHV)	MMBtu/hr	23.10	Converted from the Firing Rate (LHV).
VOC Content	%	1.00	Based on actual flare data, natural gas basis
VOC Destruction Efficiency	%	98	Based on actual flare data, natural gas basis

Combustion Emissions

Pollutant	Emission Factor (Ib/MMBtu)	Emission Factor (Ib/MMscf)	Emissions (Ib/hr)	Emissions (tpy)	Emission Factor Source
Carbon monoxide	0.31		6.51	28.51	AP-42 Table 13.5-2
Nitrogen oxides	0.068		1.57	6.88	AP-42 Table 13.5-1
SO ₂	0.0009	0.9	0.02	0.08	5 ppmv (2,995 grains/MMscf) of total Sulfur in fuel gas. Emission factor is a ratioed up from AP-42 Table 1.4-2 (2,000 grains/MMscf basis). The conversion to equivalent lb/MMBtu factors from the LHV (Btu/scf). Basis natural gas.
PM/PM ₁₀ /PM _{2.5}	1.25E-04	0.12	0.009	0.04	AP-42 Table 13.5-1, Footnote d. Conservatively based on 5% of 40 μg/L for lightly smoking flares as the flare is non-smoking.
VOC	0.009	8.96	0.19	0.82	Based on unit conversions of natural gas molecular weight, VOC
Methanol			0.19	0.82	Content and VOC Destruction Efficiency

Sample Calculations

	Average Hourly Emissions for CO:			
1	0.31 lb	21 MMBtu	= 6.51 lb/hr	
	MMBtu	hr = 6.51 l		
	Annual Emissions for CO:			
	6.51 lb	8760 hr	1 ton	= 28.51 lb/hr
	hr	yr	2000 lb	- 20.31 10/11

GHG Emission Calculation Basis:

202,356 Annual Average Heat Input (MMBtu/yr)

Summary of GHG Emissions

Pollutant	Emission Factor (kg/MMBtu) ¹	Emissions (metric tons/yr) ²	Emissions (US tons/yr) ³	
CO ₂	59.00	11,939.00	13,156.78	
CH₄	3.0E-03	0.61	6.69E-01	
N ₂ O	6.0E-04	0.12	1.34E-01	
CO ₂ e ⁴		11,990.36	13,213	

Notes

1. Based on EPA default factors in Subpart C Tables C-1 and C-2 for fuel gas.

2. Calculated based on the heat input, emission factors, and equations C-1b and C-8b of Subpart C. CO₂e based on Subpart A Table A-1 factors. CO₂, CH₄, or N₂O (metric tpy) = 1E-03 * Gas (MMBtu/yr) * Emission Factor (kg/MMBtu)

3. 1 metric ton = 1.102 US ton

4. CO₂e = CO₂, CH₄, or N₂O (tpy) * Global Warming Potential factor (GWP)

CO ₂ GWP	1
$CH_4 GWP$	25
N ₂ O GWP	298

Source Description: Flare (Startups/Shutdowns)	Calculation Date: 1/26/2023	
Source ID No. FLR	Calculated by: JLS	
Tempo ID No. EQT 0003	Reviewed by: AHN	

Description: The following calculations provide a basis for estimate of flare emissions from startups and shutdowns. Facility specific operating data and design data were utilized to provide a reasonable representation of startup/shutdown events.

Total Annual Emissions (tpv)

Total Annual Enhosions (tpy)													
Emissions Summary (tpy)	Emission Factor (Ib/MMBTU) ^{1,2}			Startup Stream 2	Startup Stream 3	Startup Stream 4	Startup Stream 5	Synloop ASU Trip Stream 6	Synloop ASU Trip 7	Unplanned Shutdown Stream 8	Planned Shutdown Stream 9	Exchanger E-03008A/B Stream 10	Total Annual Emissions (TPY)
VOC ⁵			0.11		0.22	0.30	0.34	0.20	0.20	1.33	0.80	5.53	9.03
Carbon monoxide	0.31		3.98	33.85	2.23	0.10	0.26	4.34	28.21	5.00	3.00	0.73	81.71
Nitrogen oxides	0.068		0.96	8.17	0.54	0.02	0.06	1.05	6.81	1.21	0.72	0.18	19.72
PM/PM ₁₀ /PM _{2.5}		0.12	1.69E-03	0.04	3.00E-03	1.87E-04	3.15E-04	4.99E-03	0.03	0.01	0.004	4.70E-04	0.09
SO ₂		0.9	0.01										0.01
Methanol ⁵					0.22	0.30	0.34	0.20	0.20	0.50	0.10	5.53	7.39

Maximum Hourly Emissions (lb/hr)

Emissions Summary (lb/hr)	Emission Factor (Ib/MMBTU) ^{1,2}			Startup Stream 2	Startup Stream 3	Startup Stream 4	Startup Stream 5	Synloop ASU Trip Stream 6	Synloop ASU Trip 7	Unplanned Shutdown Stream 8	Planned Shutdown Stream 9	Exchanger E-03008A/B Stream 10	Max Hourly Emissions (Ib/hr)
VOC ⁵			6.33		9.30	10.09	9.38	100.00	10.00	66.39	199.16	11,056.44	11,056.44
Carbon monoxide	0.31		220.88	1,410.50	93.00	3.36	7.29	2,170.00	1,410.50	250.00	750.00	1,469.69	2,170.00
Nitrogen oxides	0.068		53.30	340.34	22.44	0.81	1.76	523.60	340.34	60.32	180.97	354.62	523.60
PM/PM ₁₀ /PM _{2.5}		0.12	0.09	1.62	0.12	0.01	0.01	2.50	1.62	0.32	0.97	0.94	2.50
SO ₂		0.9	0.67										0.67
Methanol ⁵					9.30	10.09	9.38	100.00	10.00	25.00	25.00	11,056.44	11,056.44

Koch Methanol St. James, LLC **KMe Facility** Flare Emission Calculations - Startups/Shutdowns

SOURCE INFORMATION

		2
Source Description: Flare (Startups/Shutdowns)	Calculation Date: 1/26/2023	
Source ID No. FLR	Calculated by: JLS	
Tempo ID No. EQT 0003	Reviewed by: AHN	

Parameter	Units	Startup Stream 1	Startup Stream 2	Startup Stream 3	Startup Stream 4	Startup Stream 5	Synloop ASU Trip Stream 6	Synloop ASU Trip 7	Unplanned Shutdown Stream 8	Planned Shutdown Stream 9	Exchanger E-03008A/B Stream 10
Duration	hr/yr	36	48	48	60	72	4	40	40	8	0.98
Molweight (combined)	lb/lbmol	16	11.21	8.40	23.20	39.70	11.21	32.50			30.30
Flow rate	scf/hr	750,000	13,000,000	1,000,000	50,000	70,000	20,000,000	13,000,000			7,648,290
Lower Heating Value (LHV)	BTU/scf	950	350	300	217	336	350	350	300	300	
Firing Rate (LHV)	MMBtu/hr	712.50	4550.00	300.00	10.85	23.52	7,000	4,550			4821.28
Firing Rate (HHV)	MMBtu/hr	783.75	5005.00	330.00	11.94	25.87	7,700	5,005			5303.41
Firing Rate (LHV)	MMBtu/yr	25,650	218,400	14,400	651	1,693	28,000	182,000			4821.28
VOC Destruction Efficiency	%	98.00		98.00	98.00	98.00	98.00	98.00			98.00

¹ CO Emission factor from AP-42 Table 13.5-2 (02/18). Emissions factor basis is LHV.

² NOx Emission factor from AP-42 Table 13.5-1 (02/18). Emission factor basis is HHV.

³ PM/PM10/PM2.5 Emission factor from AP-42 Table 13.5-1, Footnote D. Conservatively based on 5% of 40 µg/L for lightly smoking flares as the flare is non-smoking.

⁴ SO2 Emission factor: 5 ppmv (2,995 grains/MMscf) of total Sulfur in fuel gas. Emission factor is a ratioed up from AP-42 Table 1.4-2 (2,000 grains/MMscf basis). The conversion to equivalent b/MMBtu factors is shown for information only.

⁵ VOC and Methanol determined from stream flow rate, mol% content in streams, and VOC destruction efficiency.

Standard Conditions for SCF/HR calculations						
Р	1 a	atm				
Т	60 F	-				
т	519.67 F	۲				
Gas Constant	0.73024 f	t3-atm/R-lbmol				
Gas Constant	379.3 \$	SCF/lb-mole				

GHG Emission Calculation Basis:

523,177 Annual Average Heat Input (MMBtu/yr)

Summary of GHG Emissions

Summary of GHG Emissions							
Fuel Combustion (40 CFR 98 Subpart C)							
Pollutant	Emission Factor (kg/MMBtu) ¹	Emissions (metric tons/yr) ²	Emissions (US tons/yr) ³				
CO2	59.00	30,867.46	34,015.94				
CH₄	3.0E-03	1.57	1.73				
N ₂ O	6.0E-04	0.31	0.35				
CO ₂ e ⁴		31,000.24	34,162.27				

Notes

1. Based on EPA default factors in Subpart C Tables C-1 and C-2 for fuel gas.

2. Calculated based on the heat input, emission factors, and equations C-1b and C-8b of Subpart C. CO₂e based on Subpart A Table A-1 factors.

CO₂, CH₄, or N₂O (metric tpy) = 1E-03 * Gas (MMBtu/yr) * Emission Factor (kg/MMBtu)

3. 1 metric ton = 1.102 US ton

4. CO₂e = CO₂, CH₄, or N₂O (tpy) * Global Warming Potential factor (GWP)

CO ₂ GWP	1
CH_4 GWP	25
N ₂ O GWP	298

Koch Methanol St. James, LLC KMe Facility Flare Emission Calculations - Startups/Shutdowns

SOURCE INFORMATION

		/ · · · · · · · · · · · · · · · · · · ·
Source Description: Flare (Startups/Shutdowns)	Calculation Date: 1/26/2023	1
Source ID No. FLR	Calculated by: JLS	1
Tempo ID No. EQT 0003	Reviewed by: AHN	

Startup Process Stream 1: Natural Gas Vent to Flare through FV-301

Stream Data

otream Data				
Parameter	Units	Value	Source	
Duration per event	hours	3		
Events per year		12		
Annual Duration	hr/yr	36	Based on Actual Flare Data provided by Koch 8/22/2022	
Molweight (combined)	lb/lbmol	16.00	Based off Actual Flare Data provided by Roch 6/22/2022	
Flow rate	scf/hr	750,000		
Lower Heating Value (LHV)	Btu/scf	950		
Firing Rate (LHV)	MMBtu/hr	712.50	Calculated from Flow rate (scf/hr) and LHV (Btu/scf).	
Firing Rate (HHV)	MMBtu/hr	783.75	Converted from the Firing Rate (LHV).	
VOC Content	%	1.00	Based on Actual Flare Data provided by Koch 8/22/2022	
VOC Destruction Efficiency	%	98.00	Based on Actual Flare Data provided by Koch 8/22/2022	

Combustion Emissions

Pollutant	Emission Factor (Ib/MMBtu)	Emission Factor (Ib/mmscf)	Emissions (Ib/hr)	Emissions (tpy)	Emission Factor Source
VOC		8.44	6.33	0.11	Based on unit conversions of Molecular weight, VOC Content and VOC Destruction Efficiency
Carbon monoxide	0.31		220.88	3.98	AP-42 Table 13.5-2
Nitrogen oxides	0.068		53.30	0.96	AP-42 Table 13.5-1
SO ₂		0.9	0.67	0.01	5 ppmv (2,995 grains/MMscf) of total Sulfur in fuel gas. Emission factor is a ratioed up from AP-42 Table 1.4-2 (2,000 grains/MMscf basis). The conversion to equivalent Ib/MMBtu factors is shown for information only.
PM/PM ₁₀ /PM _{2.5}		0.12	0.094	0.002	AP-42 Table 13.5-1, Footnote d. Conservatively based on 5% of 40 μ g/L for lightly smoking flares as the flare is non-smoking.

Startup Process Stream 2: Reformed Gas Vent to Flare

Stream Data Parameter Units Value Source Duration per event hours 4 12 Events per year ---Annual Duration hr/yr 48 Based on Actual Flare Data provided by Koch 8/22/2022 Molweight (combined) lb/lbmol 11.21 Flow rate scf/hr 13,000,000 Lower Heating Value (LHV) Btu/scf 350 Firing Rate (LHV) MMBtu/hr 4550.00 Calculated from Flow rate (scf/hr) and LHV (Btu/scf). MMBtu/hr Converted from the Firing Rate (LHV). Firing Rate (HHV) 5005.00

Pollutant	Emission Factor (Ib/MMBtu)	Emission Factor (Ib/mmscf)	Emissions (Ib/hr)	Emissions (tpy)	Emission Factor Source
VOC			-		This stream contains no volatile organic compounds.
Carbon monoxide	0.31		1410.50	33.85	AP-42 Table 13.5-2
Nitrogen oxides	0.068		340.34	8.17	AP-42 Table 13.5-1
SO ₂					This stream contains no sulphur content.
PM/PM ₁₀ /PM _{2.5}		0.12	1.62	0.04	AP-42 Table 13.5-1, Footnote d. Conservatively based on 5% of 40 μ g/L for lightly smoking flares as the flare is non-smoking.

Koch Methanol St. James, LLC KMe Facility Flare Emission Calculations - Startups/Shutdowns

SOURCE INFORMATION

Source Description: Flare (Startups/Shutdowns)	Calculation Date: 1/26/2023	
Source ID No. FLR	Calculated by: JLS	
Tempo ID No. EQT 0003	Reviewed by: AHN	

Startup Process Stream 3: Purge Gas Vent to Flare

Stream Data

otream butu			
Parameter	Units	Value	Source
Duration	hours	4	
Events per year		12	
Annual Duration	hr/yr	48	Based on Actual Flare Data provided by Koch 8/22/2022
Molweight (combined)	lb/lbmol	8.40	based on Actual Flate Data provided by Koch 0/22/2022
Flow rate	scf/hr	1,000,000	
Lower Heating Value (LHV)	Btu/scf	300	
Firing Rate (LHV)	MMBtu/hr	300.00	Calculated from Flow rate (scf/hr) and LHV (Btu/scf).
Firing Rate (HHV)	MMBtu/hr	330.00	Converted from the Firing Rate (LHV).
VOC Content	%	2.10	Based on Actual Flare Data provided by Koch 8/22/2022
VOC Destruction Efficiency	%	98.00	based on Actual Flare Data provided by Roch 6/22/2022

Pollutant	Emission Factor (Ib/MMBtu)	Emission Factor (Ib/mmscf)	Emissions (Ib/hr)	Emissions (tpy)	Emission Factor Source
VOC		9.30	9.30	0.22	Based on unit conversions of Molecular weight, VOC
Methanol			9.30	0.22	Content and VOC Destruction Efficiency
Carbon monoxide	0.31		93.00	2.23	AP-42 Table 13.5-2
Nitrogen oxides	0.068		22.44	0.54	AP-42 Table 13.5-1
SO ₂					This stream contains no sulphur content.
PM/PM ₁₀ /PM _{2.5}		0.12	0.12	0.003	AP-42 Table 13.5-1, Footnote d. Conservatively based on 5% of 40 µg/L for lightly smoking flares as the flare is non-smoking.

Koch Methanol St. James, LLC KMe Facility Flare Emission Calculations - Startups/Shutdowns

SOURCE INFORMATION

Source Description: Flare (Startups/Shutdowns)	Calculation Date: 1/26/2023	
Source ID No. FLR	Calculated by: JLS	
Tempo ID No. EQT 0003	Reviewed by: AHN	

Startup Process Stream 4: Off Gas Vent to Flare

Stream Data

otream bata				
Parameter	Units	Value	Source	
Duration	hours	5		
Events per year		12		
Annual Duration	hr/yr	60	Based on Actual Flare Data provided by Koch 8/22/2022	
Molweight (combined)	lb/lbmol	23.20	based of Actual Fiale bata provided by Noci 0/22/2022	
Flow rate	scf/hr	50,000		
Lower Heating Value (LHV)	Btu/scf	217		
Firing Rate (LHV)	MMBtu/hr	10.85	Calculated from Flow rate (scf/hr) and LHV (Btu/scf).	
Firing Rate (HHV)	MMBtu/hr	11.94	Converted from the Firing Rate (LHV).	
VOC Content	%	16.50	Based on Actual Flore Data provided by Keeb 8/00/2002	
VOC Destruction Efficiency	%	98.00	Based on Actual Flare Data provided by Koch 8/22/2022	

Pollutant	Emission Factor (Ib/MMBtu)	Emission Factor (Ib/mmscf)	Emissions (Ib/hr)	Emissions (tpy)	Emission Factor Source
VOC		201.85	10.09	0.30	Based on unit conversions of Molecular weight, VOC Content and VOC Destruction Efficiency
Methanol			10.09	0.30	
Carbon monoxide	0.31		3.36	0.10	AP-42 Table 13.5-2
Nitrogen oxides	0.068		0.81	0.02	AP-42 Table 13.5-1
SO ₂					This stream contains no sulphur content.
PM/PM ₁₀ /PM _{2.5}		0.12	0.01	0.0002	AP-42 Table 13.5-1, Footnote d. Conservatively based on 5% of 40 µg/L for lightly smoking flares as the flare is non- smoking.

Koch Methanol St. James, LLC KMe Facility Flare Emission Calculations - Startups/Shutdowns

SOURCE INFORMATION

Source Description: Flare (Startups/Shutdowns)	Calculation Date: 1/26/2023	
Source ID No. FLR	Calculated by: JLS	
Tempo ID No. EQT 0003	Reviewed by: AHN	

Startup Process Stream 5: Expansion Gas to Flare

Stream Data

Parameter	Units	Value	Source	
Duration	hours	6		
Events per year		12		
Annual Duration	hr/yr	72	Based on Actual Flare Data provided by Koch 8/22/2022	
Molweight (combined)	lb/lbmol	39.70	Dased on Actual Flate Data provided by Koch 0/22/2022	
Flow rate	scf/hr	70,000		
Lower Heating Value (LHV)	Btu/scf	336		
Firing Rate (LHV)	MMBtu/hr	23.52	Calculated from Flow rate (scf/hr) and LHV (Btu/scf).	
Firing Rate (HHV)	MMBtu/hr	25.87	Converted from the Firing Rate (LHV).	
VOC Content	%	6.40	Based on Actual Flare Data provided by Koch 8/22/2022	
VOC Destruction Efficiency	%	98.00		

Startup Process Stream 5: Combustion Emissions

Pollutant	Emission Factor (Ib/MMBtu)	Emission Factor (Ib/mmscf)	Emissions (Ib/hr)	Emissions (tpy)	Emission Factor Source
VOC		133.97	9.38	0.34	Based on unit conversions of Molecular weight, VOC Content and VOC Destruction Efficiency
Methanol			9.38	0.34	
Carbon monoxide	0.31		7.29	0.26	AP-42 Table 13.5-2
Nitrogen oxides	0.068		1.76	0.06	AP-42 Table 13.5-1
SO ₂					This stream contains no sulphur content.
PM/PM ₁₀ /PM _{2.5}		0.12	0.01	3.02E-04	AP-42 Table 13.5-1, Footnote d. Conservatively based on 5% of 40 µg/L for lightly smoking flares as the flare is non- smoking.

Stream 6: Synloop/ASU Trip Reformed Gas Vent to Flare (Initial trip)

Stream Data

Stream Data			
Parameter	Units	Value	Source
Duration	hours	1	
Events per year		4	
Annual Duration	hr/yr	4	
Molweight (combined)	lb/lbmol	11.21	Based on Actual Flare Data provided by Koch 8/22/2022
VOC emissions per events	lbs	100.00	
Flow rate	scf/hr	20,000,000	
Lower Heating Value (LHV)	Btu/scf	350	
Firing Rate (LHV)	MMBtu/hr	7000.00	Calculated from Flow rate (scf/hr) and LHV (Btu/scf).
Firing Rate (HHV)	MMBtu/hr	7700.00	Converted from the Firing Rate (LHV).

Pollutant	Emission Factor (Ib/MMBtu)	Emission Factor (Ib/mmscf)	Emissions (Ib/hr)	Emissions (tpy)	Emission Factor Source
VOC			100.00	0.20	Emissions based on actual flare data provided by Koch
Methanol			100.00	0.20	Emissions based on actual hare data provided by Roch
Carbon monoxide	0.31		2170.00	4.34	AP-42 Table 13.5-2
Nitrogen oxides	0.068		523.60	1.05	AP-42 Table 13.5-1
SO ₂		-			This stream contains no sulphur content.
PM/PM ₁₀ /PM _{2.5}		0.12	2.50	0.005	AP-42 Table 13.5-1, Footnote d. Conservatively based on 5% of 40 $\mu g/L$ for lightly smoking flares as the flare is non-smoking.

RAMBOLL

Koch Methanol St. James, LLC KMe Facility Flare Emission Calculations - Startups/Shutdowns

SOURCE INFORMATION

Source Description: Flare (Startups/Shutdowns)	Calculation Date: 1/26/2023	
Source ID No. FLR	Calculated by: JLS	
Tempo ID No. EQT 0003	Reviewed by: AHN	

Stream 7: Synloop/ASU Trip Reformed Gas Vent to Flare

Stream Data

Parameter	Units	Value	Source					
Duration	hours	10						
Events per year		4						
Annual Duration	hr/yr	40	Based on Actual Flare Data provided by Koch 8/22/2022					
VOC emissions per event	lbs	100.00	Based on Actual Flare Data provided by Roch 6/22/2022					
Flow rate	scf/hr	13,000,000						
Lower Heating Value (LHV)	Btu/scf	350						
Firing Rate (LHV)	MMBtu/hr	4550.00	Calculated from Flow rate (scf/hr) and LHV (Btu/scf).					
Firing Rate (HHV)	MMBtu/hr	5005.00	Converted from the Firing Rate (LHV).					

Combustion Emissions

Pollutant	Emission Factor (Ib/MMBtu)	Emission Factor (Ib/mmscf)	Emissions (Ib/hr)	Emissions (tpy)	Emission Factor Source
VOC		-	10.00	0.20	Emissions based on actual flare data provided by Koch
Methanol			10.00	0.20	Emissions based on actual hare data provided by Roch
Carbon monoxide	0.31		1,410.50	28.21	AP-42 Table 13.5-2
Nitrogen oxides	0.068		340.34	6.81	AP-42 Table 13.5-1
SO ₂		-			This stream contains no sulphur content.
PM/PM ₁₀ /PM _{2.5}		0.12	1.62	0.03	AP-42 Table 13.5-1, Footnote d. Conservatively based on 5% of 40 $\mu g/L$ for lightly smoking flares as the flare is non-smoking.

Stream 8: Unplanned Shutdown

Stream Data

Parameter	l lusita	Value						
Parameter	Units	Value	Source					
Duration	hr/yr	4	Conservative estimate					
Events per year		10	Based on engineering judgement					
Annual Duration	hr/yr	40	Conservative estimate					
VOC emissions per event	lbs	265.55						
Methanol emissions per event	lbs	100.00						
CO emissions per event	tons	0.50	Emissions based on engineering judgement					
NOx emissions per event	tons	0.12						
PM emissions per event	tons	0.001						

Combustion Emissions

Pollutant	Emission Factor (Ib/MMBtu)	Emission Factor (Ib/mmscf)	Emissions (Ib/hr)	Emissions (tpy)	Emission Factor Source
VOC			66.39	1.33	Emissions based on actual flare data provided by Koch
Methanol			25.00	0.50	Emissions based on actual hare data provided by Roch
Carbon monoxide			250.00	5.00	Emissions based on actual flare data provided by Koch
Nitrogen oxides			60.32	1.21	Emissions based on actual flare data provided by Koch
SO ₂					This stream contains no sulphur content.
PM/PM ₁₀ /PM _{2.5}			0.32	0.01	Emissions based on actual flare data provided by Koch

RAMBOLL

Koch Methanol St. James, LLC KMe Facility Flare Emission Calculations - Startups/Shutdowns

SOURCE INFORMATION

Source Description: Flare (Startups/Shutdowns)	Calculation Date: 1/26/2023
Source ID No. FLR	Calculated by: JLS
Tempo ID No. EQT 0003	Reviewed by: AHN

Stream 9: Planned Shutdown

Stream Data

Parameter	Units	Value	Source
Duration	hr/yr	4	Conservative estimate
Events per year		2	Based on engineering judgement
Annual Duration	hr/yr	8	Conservative estimate
VOC emissions per event	lbs	796.65	
Methanol emissions per event	lbs	100.00	
CO emissions per event	tons	1.50	Emissions based on engineering judgement
NOx emissions per event	tons	0.36	
PM Emissions per event	tons	0.002	

Combustion Emissions

Pollutant	Emission Factor (Ib/MMBtu)	Emission Factor (Ib/mmscf)	Emissions (Ib/hr)	Emissions (tpy)	Emission Factor Source
VOC			199.16	0.80	Emissions based on actual flare data provided by Koch
Methanol			25.00	0.10	Emissions based on actual hare data provided by Roch
Carbon monoxide			750.00	3.00	Emissions based on actual flare data provided by Koch
Nitrogen oxides			180.97	0.72	Emissions based on actual flare data provided by Koch
SO ₂					This stream contains no sulphur content.
PM/PM ₁₀ /PM _{2.5}			0.97	0.004	Emissions based on actual flare data provided by Koch

Stream 10: Exchanger E-03008A/B

Stream Data

Parameter	Units	Value	Source
Duration	hr/yr	0.98	Described as "minutes" of flaring
Molweight (combined)	lb/lbmol	30.30	Per Doc 69930-91-01-PR_171001
Flow rate	lb-m/hr	610,680	Per Doc 69930-91-01-PR_171001
Flow rate	scf/hr	7,648,290	Calculated from Molweight (lb/lbmol), Flow rate (lb-m/hr), and the Ideal Gas Law.
Lower Heating Value (LHV)	BTU/lbmol	7,895	Per Doc 69930-91-01-PR_171001
Firing Rate (LHV)	MMBtu/hr	4821.28	Calculated from Flow rate (scf/hr) and LHV (Btu/scf).
Firing Rate (HHV)	MMBtu/hr	5,303.41	Converted from the Firing Rate (LHV).
VOC (Methanol) Content	%	92.06	
VOC Destruction Efficiency	%	98.00	

Combustion Emissions

Pollutant	Emission Factor (Ib/mmbtu)	Emission Factor (Ib/mmscf)	Emissions (Ib/hr)	Emissions (tpy)	Emission Factor Source
VOC			11,056.44	5.53	Emissions based on actual flare data provided by Koch
Methanol			11056.44	5.53	Emissions based on actual hare data provided by Roch
Carbon monoxide	0.31		1,469.69	0.73	AP-42 Table 13.5-2
Nitrogen oxides	0.068	-	354.62	0.18	AP-42 Table 13.5-1
SO ₂					This stream contains no sulphur content.
					AP-42 Table 13.5-1, Footnote d. Conservatively based on 5% of 40 $\mu g/L$ for lightly smoking flares as the flare is non-
PM/PM ₁₀ /PM _{2.5}		0.12	0.94	4.70E-04	smoking.

Source ID No. FLR Tempo ID No. EQT 0003

Description:

Hazardous Air Pollutant (HAP) emissions from the combustion of natural gas (NG) to the flare are estimated below. The natural gas streams include the pilot, a routine purge stream, and a startup/shutdown streams.

Stream Data

Parameters	Pilot	Routine Purge Stream	Startup Process Stream 1: Natural Gas Vent to Flare through FV-301	Startup Process Stream 2: Reformed Gas Vent to Flare	Startup Process Stream 3: Purge Gas Vent to Flare	Startup Process Stream 4: Off Gas Vent to Flare	Startup Process Stream 5: Expansion Gas to Flare	Stream 6: Synloop/ASU Trip Reformed Gas Vent to Flare (Initial trip)	Stream 7: Synloop/ASU Trip Reformed Gas Vent to Flare	Stream 8: Unplanned Shutdown	Stream 9: Planned Shutdown	Stream 10: Exchanger E- 03008A/B
Heat Input (MMBtu/hr) (HHV)	0.52	23.10	783.75	5005.00	330.00	11.94	25.87	7,700	5,005	806	2,419	5,303.41
Hours of Operation (hr/yr)	8,760	8,760	36	48	48	60	72	4	40	40	8	0.98
Natural Gas Heating Value (Btu/scf) ¹	1,020	1,020	1,020	1,020	1,020	1,020	1,020	1,020	1,020	1,020	1,020	1,020

HAP Emissions Summary by Stream

Speciated emissions represent maximum potential to emit of each compound for each natural gas stream.

		Pilot		Routine Purge Stream		Startup Process Stream 1		Startup Process Stream 2		Startup Process Stream 3		Startup Process Stream 4	
	Emission Factors ²	Hourly Emissions	Annual Emissions	Hourly Emissions	Annual Emissions	Hourly Emissions	Annual Emissions	Hourly Emissions	Annual Emissions	Hourly Emissions	Annual Emissions	Hourly Emissions	s Annual Emissior
Pollutant	lb/MMscf	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
ganic HAPs		•				•							
2-Methylnaphthalene	2.40E-05	1.22E-08	5.33E-08	5.44E-07	2.38E-06	1.84E-05	3.32E-07	1.18E-04	2.83E-06	7.76E-06	1.86E-07	2.81E-07	8.42E-09
3-Methylchloranthrene	1.80E-06	9.12E-10	4.00E-09	4.08E-08	1.79E-07	1.38E-06	2.49E-08	8.83E-06	2.12E-07	5.82E-07	1.40E-08	2.11E-08	6.32E-10
7,12-Dimethylbenz(a)nthracene	1.60E-05	8.11E-09	3.55E-08	3.62E-07	1.59E-06	1.23E-05	2.21E-07	7.85E-05	1.88E-06	5.18E-06	1.24E-07	1.87E-07	5.62E-09
Acenaphthene	1.80E-06	9.12E-10	4.00E-09	4.08E-08	1.79E-07	1.38E-06	2.49E-08	8.83E-06	2.12E-07	5.82E-07	1.40E-08	2.11E-08	6.32E-10
Acenaphthylene	1.80E-06	9.12E-10	4.00E-09	4.08E-08	1.79E-07	1.38E-06	2.49E-08	8.83E-06	2.12E-07	5.82E-07	1.40E-08	2.11E-08	6.32E-10
Anthracene	2.40E-06	1.22E-09	5.33E-09	5.44E-08	2.38E-07	1.84E-06	3.32E-08	1.18E-05	2.83E-07	7.76E-07	1.86E-08	2.81E-08	8.42E-10
Benz(a)thracene	1.80E-06	9.12E-10	4.00E-09	4.08E-08	1.79E-07	1.38E-06	2.49E-08	8.83E-06	2.12E-07	5.82E-07	1.40E-08	2.11E-08	6.32E-10
Benzene	2.10E-03	1.06E-06	4.66E-06	4.76E-05	2.08E-04	1.61E-03	2.90E-05	1.03E-02	2.47E-04	6.79E-04	1.63E-05	2.46E-05	7.37E-07
Benzo(a)pyrene	1.20E-06	6.08E-10	2.66E-09	2.72E-08	1.19E-07	9.22E-07	1.66E-08	5.89E-06	1.41E-07	3.88E-07	9.32E-09	1.40E-08	4.21E-10
Benzo(b)fluoranthene	1.80E-06	9.12E-10	4.00E-09	4.08E-08	1.79E-07	1.38E-06	2.49E-08	8.83E-06	2.12E-07	5.82E-07	1.40E-08	2.11E-08	6.32E-10
Benzo(g,h,i)perylene	1.20E-06	6.08E-10	2.66E-09	2.72E-08	1.19E-07	9.22E-07	1.66E-08	5.89E-06	1.41E-07	3.88E-07	9.32E-09	1.40E-08	4.21E-10
Benzo(k)fluoranthene	1.80E-06	9.12E-10	4.00E-09	4.08E-08	1.79E-07	1.38E-06	2.49E-08	8.83E-06	2.12E-07	5.82E-07	1.40E-08	2.11E-08	6.32E-10
Butane	2.10E+00	1.06E-03	4.66E-03	4.76E-02	2.08E-01	1.61E+00	2.90E-02	1.03E+01	2.47E-01	6.79E-01	1.63E-02	2.46E-02	7.37E-04
Chrysene	1.80E-06	9.12E-10	4.00E-09	4.08E-08	1.79E-07	1.38E-06	2.49E-08	8.83E-06	2.12E-07	5.82E-07	1.40E-08	2.11E-08	6.32E-10
Dibenzo(a,h)anthracene	1.20E-06	6.08E-10	2.66E-09	2.72E-08	1.19E-07	9.22E-07	1.66E-08	5.89E-06	1.41E-07	3.88E-07	9.32E-09	1.40E-08	4.21E-10
Dichlorobenzene	1.20E-03	6.08E-07	2.66E-06	2.72E-05	1.19E-04	9.22E-04	1.66E-05	5.89E-03	1.41E-04	3.88E-04	9.32E-06	1.40E-05	4.21E-07
Ethane	3.10E+00	1.57E-03	6.88E-03	7.02E-02	3.08E-01	2.38E+00	4.29E-02	1.52E+01	3.65E-01	1.00E+00	2.41E-02	3.63E-02	1.09E-03
Fluoranthene	3.00E-06	1.52E-09	6.66E-09	6.79E-08	2.98E-07	2.31E-06	4.15E-08	1.47E-05	3.53E-07	9.71E-07	2.33E-08	3.51E-08	1.05E-09
Fluorene	2.80E-06	1.42E-09	6.22E-09	6.34E-08	2.78E-07	2.15E-06	3.87E-08	1.37E-05	3.30E-07	9.06E-07	2.17E-08	3.28E-08	9.83E-10
Formaldehyde	7.50E-02	3.80E-05	1.67E-04	1.70E-03	7.44E-03	5.76E-02	1.04E-03	3.68E-01	8.83E-03	2.43E-02	5.82E-04	8.78E-04	2.63E-05
n-Hexane	1.80E+00	9.12E-04	4.00E-03	4.08E-02	1.79E-01	1.38E+00	2.49E-02	8.83E+00	2.12E-01	5.82E-01	1.40E-02	2.11E-02	6.32E-04
Indeno(1,2,3-cd)pyrene	1.80E-06	9.12E-10	4.00E-09	4.08E-08	1.79E-07	1.38E-06	2.49E-08	8.83E-06	2.12E-07	5.82E-07	1.40E-08	2.11E-08	6.32E-10
Naphthalene	6.10E-04	3.09E-07	1.35E-06	1.38E-05	6.05E-05	4.69E-04	8.44E-06	2.99E-03	7.18E-05	1.97E-04	4.74E-06	7.14E-06	2.14E-07
Pentane	2.60E+00	1.32E-03	5.77E-03	5.89E-02	2.58E-01	2.00E+00	3.60E-02	1.28E+01	3.06E-01	8.41E-01	2.02E-02	3.04E-02	9.13E-04
Phenanathrene	1.70E-05	8.62E-09	3.77E-08	3.85E-07	1.69E-06	1.31E-05	2.35E-07	8.34E-05	2.00E-06	5.50E-06	1.32E-07	1.99E-07	5.97E-09
Propane	1.60E+00	8.11E-04	3.55E-03	3.62E-02	1.59E-01	1.23E+00	2.21E-02	7.85E+00	1.88E-01	5.18E-01	1.24E-02	1.87E-02	5.62E-04
Pyrene	5.00E-06	2.53E-09	1.11E-08	1.13E-07	4.96E-07	3.84E-06	6.92E-08	2.45E-05	5.89E-07	1.62E-06	3.88E-08	5.85E-08	1.76E-09
Toluene	3.40E-03	1.72E-06	7.55E-06	7.70E-05	3.37E-04	2.61E-03	4.70E-05	1.67E-02	4.00E-04	1.10E-03	2.64E-05	3.98E-05	1.19E-06
Total PAH		3.25E-08	1.43E-07	1.45E-06	6.37E-06	4.93E-05	8.88E-07	3.15E-04	7.56E-06	2.08E-05	4.98E-07	7.51E-07	2.25E-08
etals													
Arsenic	2.00E-04	1.01E-07	4.44E-07	4.53E-06	1.98E-05	1.54E-04	2.77E-06	9.81E-04	2.36E-05	6.47E-05	1.55E-06	2.34E-06	7.02E-08
Barium	4.40E-03	2.23E-06	9.77E-06	9.96E-05	4.36E-04	3.38E-03	6.09E-05	2.16E-02	5.18E-04	1.42E-03	3.42E-05	5.15E-05	1.54E-06
Beryllium	1.20E-05	6.08E-09	2.66E-08	2.72E-07	1.19E-06	9.22E-06	1.66E-07	5.89E-05	1.41E-06	3.88E-06	9.32E-08	1.40E-07	4.21E-09
Cadmium	1.10E-03	5.58E-07	2.44E-06	2.49E-05	1.09E-04	8.45E-04	1.52E-05	5.40E-03	1.30E-04	3.56E-04	8.54E-06	1.29E-05	3.86E-07
Chromium⁴	1.40E-03	7.10E-07	3.11E-06	3.17E-05	1.39E-04	1.08E-03	1.94E-05	6.87E-03	1.65E-04	4.53E-04	1.09E-05	1.64E-05	4.91E-07
Chromium VI ⁴		1.42E-07	6.22E-07	6.34E-06	2.78E-05	2.15E-04	3.87E-06	1.37E-03	3.30E-05	9.06E-05	2.17E-06	3.28E-06	9.83E-08
Cobalt	8.40E-05	4.26E-08	1.86E-07	1.90E-06	8.33E-06	6.45E-05	1.16E-06	4.12E-04	9.89E-06	2.72E-05	6.52E-07	9.83E-07	2.95E-08
Copper	8.50E-04	4.31E-07	1.89E-06	1.93E-05	8.43E-05	6.53E-04	1.18E-05	4.17E-03	1.00E-04	2.75E-04	6.60E-06	9.95E-06	2.98E-07
Manganese	3.80E-04	1.93E-07	8.44E-07	8.61E-06	3.77E-05	2.92E-04	5.26E-06	1.86E-03	4.48E-05	1.23E-04	2.95E-06	4.45E-06	1.33E-07
Mercury	2.60E-04	1.32E-07	5.77E-07	5.89E-06	2.58E-05	2.00E-04	3.60E-06	1.28E-03	3.06E-05	8.41E-05	2.02E-06	3.04E-06	9.13E-08
Molybdenum	1.10E-03	5.58E-07	2.44E-06	2.49E-05	1.09E-04	8.45E-04	1.52E-05	5.40E-03	1.30E-04	3.56E-04	8.54E-06	1.29E-05	3.86E-07
Nickel	2.10E-03	1.06E-06	4.66E-06	4.76E-05	2.08E-04	1.61E-03	2.90E-05	1.03E-02	2.47E-04	6.79E-04	1.63E-05	2.46E-05	7.37E-07
Selenium	2.40E-05	1.22E-08	5.33E-08	5.44E-07	2.38E-06	1.84E-05	3.32E-07	1.18E-04	2.83E-06	7.76E-06	1.86E-07	2.81E-07	8.42E-09
Vanadium	2.30E-03	1.17E-06	5.11E-06	5.21E-05	2.28E-04	1.77E-03	3.18E-05	1.13E-02	2.71E-04	7.44E-04	1.79E-05	2.69E-05	8.07E-07
Zinc	2.90E-02	1.47E-05	6.44E-05	6.57E-04	2.88E-03	2.23E-02	4.01E-04	1.42E-01	3.42E-03	9.38E-03	2.25E-04	3.39E-04	1.02E-05

Koch Methanol St. James, LLC KMe Facility Flare HAP Emissions from NG Combustion Emission Calculations

Calculation Date: 1/26/2023 Calculated by: JLS Reviewed by: AHN

Source ID No. FLR Tempo ID No. EQT 0003

HAP Emissions Summary by Stream

Speciated emissions represent maximum potential to emit of each compound for each natural gas stream.

			ess Stream 5	Strea	am 6	Stre	am 7	Strea	ım 8	Stre	eam 9	Stre	am 10
	Emission Factors ²	Hourly Emissions	Annual Emissions	Hourly Emissions	Annual Emissions	Hourly Emissions	Annual Emissions	Hourly Emissions					
Pollutant	lb/MMscf	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Organic HAPs	•	•	•		•		•				÷		
2-Methylnaphthalene	2.40E-05	6.09E-07	2.19E-08	1.81E-04	3.62E-07	1.18E-04	2.36E-06	1.90E-05	3.80E-07	5.69E-05	2.28E-07	1.25E-04	6.14E-08
3-Methylchloranthrene	1.80E-06	4.57E-08	1.64E-09	1.36E-05	2.72E-08	8.83E-06	1.77E-07	1.42E-06	2.85E-08	4.27E-06	1.71E-08	9.36E-06	4.60E-09
7,12-Dimethylbenz(a)nthracene	1.60E-05	4.06E-07	1.46E-08	1.21E-04	2.42E-07	7.85E-05	1.57E-06	1.27E-05	2.53E-07	3.80E-05	1.52E-07	8.32E-05	4.09E-08
Acenaphthene	1.80E-06	4.57E-08	1.64E-09	1.36E-05	2.72E-08	8.83E-06	1.77E-07	1.42E-06	2.85E-08	4.27E-06	1.71E-08	9.36E-06	4.60E-09
Acenaphthylene	1.80E-06	4.57E-08	1.64E-09	1.36E-05	2.72E-08	8.83E-06	1.77E-07	1.42E-06	2.85E-08	4.27E-06	1.71E-08	9.36E-06	4.60E-09
Anthracene	2.40E-06	6.09E-08	2.19E-09	1.81E-05	3.62E-08	1.18E-05	2.36E-07	1.90E-06	3.80E-08	5.69E-06	2.28E-08	1.25E-05	6.14E-09
Benz(a)thracene	1.80E-06	4.57E-08	1.64E-09	1.36E-05	2.72E-08	8.83E-06	1.77E-07	1.42E-06	2.85E-08	4.27E-06	1.71E-08	9.36E-06	4.60E-09
Benzene	2.10E-03	5.33E-05	1.92E-06	1.59E-02	3.17E-05	1.03E-02	2.06E-04	1.66E-03	3.32E-05	4.98E-03	1.99E-05	1.09E-02	5.37E-06
Benzo(a)pyrene	1.20E-06	3.04E-08	1.10E-09	9.06E-06	1.81E-08	5.89E-06	1.18E-07	9.49E-07	1.90E-08	2.85E-06	1.14E-08	6.24E-06	3.07E-09
Benzo(b)fluoranthene	1.80E-06	4.57E-08	1.64E-09	1.36E-05	2.72E-08	8.83E-06	1.77E-07	1.42E-06	2.85E-08	4.27E-06	1.71E-08	9.36E-06	4.60E-09
Benzo(g,h,i)perylene	1.20E-06	3.04E-08	1.10E-09	9.06E-06	1.81E-08	5.89E-06	1.18E-07	9.49E-07	1.90E-08	2.85E-06	1.14E-08	6.24E-06	3.07E-09
Benzo(k)fluoranthene	1.80E-06	4.57E-08	1.64E-09	1.36E-05	2.72E-08	8.83E-06	1.77E-07	1.42E-06	2.85E-08	4.27E-06	1.71E-08	9.36E-06	4.60E-09
Butane	2.10E+00	5.33E-02	1.92E-03	1.59E+01	3.17E-02	1.03E+01	2.06E-01	1.66E+00	3.32E-02	4.98E+00	1.99E-02	1.09E+01	5.37E-03
Chrysene	1.80E-06	4.57E-08	1.64E-09	1.36E-05	2.72E-08	8.83E-06	1.77E-07	1.42E-06	2.85E-08	4.27E-06	1.71E-08	9.36E-06	4.60E-09
Dibenzo(a,h)anthracene	1.20E-06	3.04E-08	1.10E-09	9.06E-06	1.81E-08	5.89E-06	1.18E-07	9.49E-07	1.90E-08	2.85E-06	1.14E-08	6.24E-06	3.07E-09
Dichlorobenzene	1.20E-03	3.04E-05	1.10E-06	9.06E-03	1.81E-05	5.89E-03	1.18E-04	9.49E-04	1.90E-05	2.85E-03	1.14E-05	6.24E-03	3.07E-06
Ethane	3.10E+00	7.86E-02	2.83E-03	2.34E+01	4.68E-02	1.52E+01	3.04E-01	2.45E+00	4.90E-02	7.35E+00	2.94E-02	1.61E+01	7.92E-03
Fluoranthene	3.00E-06	7.61E-08	2.74E-09	2.26E-05	4.53E-08	1.47E-05	2.94E-07	2.37E-06	4.74E-08	7.12E-06	2.85E-08	1.56E-05	7.67E-09
Fluorene	2.80E-06	7.10E-08	2.56E-09	2.11E-05	4.23E-08	1.37E-05	2.75E-07	2.21E-06	4.43E-08	6.64E-06	2.66E-08	1.46E-05	7.16E-09
Formaldehyde	7.50E-02	1.90E-03	6.85E-05	5.66E-01	1.13E-03	3.68E-01	7.36E-03	5.93E-02	1.19E-03	1.78E-01	7.12E-04	3.90E-01	1.92E-04
n-Hexane	1.80E+00	4.57E-02	1.64E-03	1.36E+01	2.72E-02	8.83E+00	1.77E-01	1.42E+00	2.85E-02	4.27E+00	1.71E-02	9.36E+00	4.60E-03
Indeno(1,2,3-cd)pyrene	1.80E-06	4.57E-08	1.64E-09	1.36E-05	2.72E-08	8.83E-06	1.77E-07	1.42E-06	2.85E-08	4.27E-06	1.71E-08	9.36E-06	4.60E-09
Naphthalene	6.10E-04	1.55E-05	5.57E-07	4.60E-03	9.21E-06	2.99E-03	5.99E-05	4.82E-04	9.65E-06	1.45E-03	5.79E-06	3.17E-03	1.56E-06
Pentane	2.60E+00	6.59E-02	2.37E-03	1.96E+01	3.93E-02	1.28E+01	2.55E-01	2.06E+00	4.11E-02	6.17E+00	2.47E-02	1.35E+01	6.65E-03
Phenanathrene	1.70E-05	4.31E-07	1.55E-08	1.28E-04	2.57E-07	8.34E-05	1.67E-06	1.34E-05	2.69E-07	4.03E-05	1.61E-07	8.84E-05	4.35E-08
Propane	1.60E+00	4.06E-02	1.46E-03	1.21E+01	2.42E-02	7.85E+00	1.57E-01	1.27E+00	2.53E-02	3.80E+00	1.52E-02	8.32E+00	4.09E-03
Pyrene	5.00E-06	1.27E-07	4.57E-09	3.77E-05	7.55E-08	2.45E-05	4.91E-07	3.95E-06	7.91E-08	1.19E-05	4.74E-08	2.60E-05	1.28E-08
Toluene	3.40E-03	8.62E-05	3.10E-06	2.57E-02	5.13E-05	1.67E-02	3.34E-04	2.69E-03	5.38E-05	8.06E-03	3.23E-05	1.77E-02	8.69E-06
Total PAH		1.63E-06	5.86E-08	4.85E-04	9.69E-07	3.15E-04	6.30E-06	5.08E-05	1.02E-06	1.52E-04	6.09E-07	3.34E-04	1.64E-07
Metals	•	•	•		•		•		•		•		
Arsenic	2.00E-04	5.07E-06	1.83E-07	1.51E-03	3.02E-06	9.81E-04	1.96E-05	1.58E-04	3.16E-06	4.74E-04	1.90E-06	1.04E-03	5.11E-07
Barium	4.40E-03	1.12E-04	4.02E-06	3.32E-02	6.64E-05	2.16E-02	4.32E-04	3.48E-03	6.96E-05	1.04E-02	4.17E-05	2.29E-02	1.12E-05
Beryllium	1.20E-05	3.04E-07	1.10E-08	9.06E-05	1.81E-07	5.89E-05	1.18E-06	9.49E-06	1.90E-07	2.85E-05	1.14E-07	6.24E-05	3.07E-08
Cadmium	1.10E-03	2.79E-05	1.00E-06	8.30E-03	1.66E-05	5.40E-03	1.08E-04	8.70E-04	1.74E-05	2.61E-03	1.04E-05	5.72E-03	2.81E-06
Chromium ⁴	1.40E-03	3.55E-05	1.28E-06	1.06E-02	2.11E-05	6.87E-03	1.37E-04	1.11E-03	2.21E-05	3.32E-03	1.33E-05	7.28E-03	3.58E-06
Chromium VI ⁴		7.10E-06	2.56E-07	2.11E-03	4.23E-06	1.37E-03	2.75E-05	2.21E-04	4.43E-06	6.64E-04	2.66E-06	1.46E-03	7.16E-07
Cobalt	8.40E-05	2.13E-06	7.67E-08	6.34E-04	1.27E-06	4.12E-04	8.24E-06	6.64E-05	1.33E-06	1.99E-04	7.97E-07	4.37E-04	2.15E-07
Copper	8.50E-04	2.16E-05	7.76E-07	6.42E-03	1.28E-05	4.17E-03	8.34E-05	6.72E-04	1.34E-05	2.02E-03	8.06E-06	4.42E-03	2.17E-06
Manganese	3.80E-04	9.64E-06	3.47E-07	2.87E-03	5.74E-06	1.86E-03	3.73E-05	3.00E-04	6.01E-06	9.01E-04	3.61E-06	1.98E-03	9.71E-00
Manganese	2.60E-04	6.59E-06	2.37E-07	1.96E-03	3.93E-06	1.28E-03	2.55E-05	2.06E-04	4.11E-06	6.17E-04	2.47E-06	1.35E-03	6.65E-07
Molybdenum	1.10E-03	2.79E-05	1.00E-06	8.30E-03	1.66E-05	5.40E-03	1.08E-04	8.70E-04	1.74E-05	2.61E-03	1.04E-05	5.72E-03	2.81E-06
Nickel	2.10E-03	5.33E-05	1.92E-06	1.59E-02	3.17E-05	1.03E-02	2.06E-04	1.66E-03	3.32E-05	4.98E-03	1.99E-05	1.09E-02	5.37E-06
Selenium	2.40E-05	6.09E-07	2.19E-08	1.81E-04	3.62E-07	1.18E-04	2.36E-04	1.90E-05	3.80E-07	5.69E-05	2.28E-07	1.25E-04	6.14E-08
Vanadium	2.30E-03	5.83E-05	2.10E-06	1.74E-02	3.47E-05	1.13E-04	2.26E-04	1.82E-03	3.64E-05	5.46E-03	2.18E-05	1.20E-02	5.88E-06
Zinc	2.90E-02	7.36E-04	2.65E-05	2.19E-01	4.38E-04	1.42E-01	2.85E-03	2.29E-02	4.59E-04	6.88E-02	2.75E-04	1.51E-01	7.41E-05
ZINC	2.90E-02	7.36E-04	2.65E-05	2.19E-01	4.38E-04	1.42E-01	2.85E-03	2.29E-02	4.59E-04	6.88E-02	2.75E-04	1.51E-01	7.41E-05

Koch Methanol St. James, LLC KMe Facility Flare HAP Emissions from NG Combustion Emission Calculations

Calculation Date: 1/26/2023 Calculated by: JLS Reviewed by: AHN

Source ID No. FLR Tempo ID No. EQT 0003

HAP Emissions Summary

The following table summarizes the hourly and annual emissions calculated in the table above.

	Hourly Emissions	Annual Emissions	EIQ Threshold ³		
Pollutant	lb/hr	tpy	(tpy)	HAP/TAP?	Requires Permitting?
Organic Compounds		······································	(1)		
2-Methylnaphthalene	6.45E-04	9.20E-06	5.00E-04	YES	NO
3-Methylchloranthrene	4.84E-05	6.90E-07	5.00E-04	YES	NO
7,12-Dimethylbenz(a)nthracene	4.30E-04	6.13E-06	5.00E-04	YES	NO
Acenaphthene	4.84E-05	6.90E-07	5.00E-04	YES	NO
Acenaphthylene	4.84E-05	6.90E-07	5.00E-04	YES	NO
Anthracene	6.45E-05	9.20E-07	5.00E-04	YES	NO
Benz(a)thracene	4.84E-05	6.90E-07	5.00E-04	YES	NO
Benzene	5.64E-02	8.05E-04	5.00E-04	YES	YES
Benzo(a)pyrene	3.23E-05	4.60E-07	5.00E-04	YES	NO
Benzo(b)fluoranthene	4.84E-05	6.90E-07	5.00E-04	YES	NO
Benzo(g,h,i)perylene	3.23E-05	4.60E-07	5.00E-04	YES	NO
Benzo(k)fluoranthene	4.84E-05	6.90E-07	5.00E-04	YES	NO
Butane	5.64E+01	8.05E-01	5.00E-04	NO	NO
Chrysene	4.84E-05	6.90E-07	5.00E-04	YES	NO
Dibenzo(a,h)anthracene	3.23E-05	4.60E-07	5.00E-04	YES	NO
Dichlorobenzene	3.23E-02	4.60E-04	5.00E-04	YES	NO
Ethane	8.33E+01	1.19E+00	5.00E-04	NO	NO
Fluoranthene	8.06E-05	1.15E-06	5.00E-04	YES	NO
Fluorene	7.53E-05	1.07E-06	5.00E-04	YES	NO
Formaldehvde	2.02E+00	2.87E-02	5.00E-04	YES	YES
n-Hexane	4.84E+01	6.90E-01	5.00E-04	YES	YES
Indeno(1,2,3-cd)pyrene	4.84E-05	6.90E-07	5.00E-04	YES	NO
Naphthalene	1.64E-02	2.34E-04	5.00E-04	YES	NO
Pentane	6.99E+01	9.96E-01	5.00E-04	NO	NO
Phenanathrene	4.57E-04	6.51E-06	5.00E-04	YES	NO
Propane	4.30E+01	6.13E-01	5.00E-04	NO	NO
Pyrene	1.34E-04	1.92E-06	5.00E-04	YES	NO
Toluene	9.14E-02	1.30E-03	5.00E-04	YES	YES
Total PAH	1.73E-03	2.46E-05	5.00E-04	YES	NO
Metals					·
Arsenic	5.38E-03	7.66E-05	5.00E-04	YES	NO
Barium	1.18E-01	1.69E-03	5.00E-04	YES	YES
Beryllium	3.23E-04	4.60E-06	5.00E-04	YES	NO
Cadmium	2.96E-02	4.21E-04	5.00E-04	YES	NO
Chromium	3.76E-02	5.36E-04	5.00E-04	YES	YES
Chromium VI	7.53E-03	1.07E-04	5.00E-04	NO	NO
Cobalt	2.26E-03	3.22E-05	5.00E-04	YES	NO
Copper	2.28E-02	3.26E-04	5.00E-04	YES	NO
Manganese	1.02E-02	1.46E-04	5.00E-04	YES	NO
Mercury	6.99E-03	9.96E-05	5.00E-04	YES	NO
Molybdenum	2.96E-02	4.21E-04	5.00E-04	NO	NO
Nickel	5.64E-02	8.05E-04	5.00E-04	YES	YES
Selenium	6.45E-04	9.20E-06	5.00E-04	YES	NO
Vanadium	6.18E-02	8.81E-04	5.00E-04	NO	NO
Zinc	7.79E-01	1.11E-02	5.00E-04	YES	YES

Notes:

1. Heating value based on EPA AP-42 Section 1.4: Natural Gas Combustion, Table 1.4-2, Footnote a.

2. Emission factors are based on EPA AP-42 Section 1.4: Natural Gas Combustion, Tables 1.4-3 (organics) and 1.4-4 (metals).

3. Emissions less than permitting thresholds of 0.0005 tpy will not be included in the permit or EIQ sheets.

4. Total chromium emissions are estimated for permitting purposes and utilized in comparing facility-wide emission increases to the "chromium VI (and compounds)" minimum emission rate provided in LAC 33:III. Chpater 51. Chromium VI is speciated from total chromium for Environmental Justice (EJ) modeling purposes. Chromium VI is conservatively assumed to be 20% of total chromium based on information provided in Table 4-3, footnote I of the Emissions Estimation Protocol for Petroleum Refineries document (April 2015) for refinery fuel gas.

Koch Methanol St. James, LLC KMe Facility Flare HAP Emissions from NG Combustion Emission Calculations

Calculation Date: 1/26/2023 Calculated by: JLS Reviewed by: AHN

Koch Methanol St. James, LLC KMe Facility Cooling Water Tower Emission Calculations

Calculation Date: 1/26/2023

Calculated by: AHN

Reviewed by: MR

SOURCE INFORMATION

Source Description: Cooling Water Tower Source ID No. CWT Tempo ID No. EQT 0007

Description:

Heat from the process will be removed by evaporating re-circulating cooling water in an induced-draft cooling tower.

Basis:

200,000 gal/min, avg water circulating rate 8,760 hr/yr, annual operating rate 0.0005 % Drift factor 60 gal/hr, avg liquid drift rate 0.7 lb/MMgal, VOC emission factor

PM Emission Calculation:

1,000 mg/L, average total dissolved solids (TDS) 453,592 mg/lb, mass conversion 3.79 L/gal, liquid volume conversion 0.008 lb/gal, TDS per gallon of drift 0.50 avg lb/hr, PM emission rate

· (I) D (TD O*(())1/3

PM₁₀/PM_{2.5} Emission Calculations¹:

	Solid Particle Diameter $(d_p) = D_d (TDS^*(p_w/p_{tds}))^{m}$
p _{w=}	1 g/cm ³
p _{tds=}	2.2 g/cm ³
Average TDS=	1,000 ppm

Source:

Project Design Basis. Project Design Basis. Project Design Basis. Calculated from data above. See note 3.

Project Design Basis and 1H2022 sample data. Conversion. Conversion. Calculated from data above. Calculated from data above.

 d_d = droplet diameter (microns) d_p =particle diameter (microns)

p_w =density water

p_{tds} =density tds

Droplet Diameter (D _d) ²	Solid Particle Diameter (d _p) (Avg TDS)	% Drift Mass Smaller than ²
10	0.77	12
15	1.15	20
35	2.69	40
65	5.00	60
115	8.84	80
170	13.07	90
230	17.68	95
375	28.83	99
525	40.37	100

Average TDS:

VOC, CO, and GHG Emissions Calculations:

		Average Hourly	Annual
Pollutant	Mass fraction ⁴	(lb/hr)	(tons/yr)⁵
VOC/Methanol ³	0.31	8.40	36.79
CO	0.04	1.07	4.69
Methane	0.21	5.53	24.23
CO ₂	0.24	6.59	28.84

Source Description: Cooling Water Tower Source ID No. CWT Tempo ID No. EQT 0007

Calculation Date: 1/26/2023 Calculated by: AHN Reviewed by: MR

Emissions Summary

Pollutant	Average Hourly (Ib/hr)	Annual (ton/yr)
PM	0.50	2.20
PM ₁₀	0.41	1.82
PM _{2.5}	0.19	0.84
VOC (Methanol)	8.40	36.79
CO	1.07	4.69
CO ₂ e ⁶		634

Notes:

1. PM₁₀ and PM_{2.5} emissions are estimated as a percent of total PM using methodology described in *Calculating Realistic PM*₁₀ *Emissions from Cooling Towers* by Joel Reisman and Gordon Frisbie and droplet size distribution data for a Marley drift eliminator.

2. Droplet diameter and % mass smaller columns are results of particle size distribution derived from test results for a Marley drift eliminator.

3. VOC emission factor based on controlled emissions from AP-42 Chapter 5, Table 5.1-3 Fugitive Emissions Factors for Petroleum Refineries.

4. Mass fraction based on representative HON-applicable stream containing methanol, CO, methane, and CO₂.

5. CO, Methane and CO₂ emissions based on the ratio of mass fraction of those emissions to the mass fraction of VOC/methanol.

6. CO₂e = CO₂ or CH₄ (tpy) * Global Warming Potential factor (GWP). GWPs from 40 CFR 98 Subpart A, Table A-1, rev. 11/29/2013.

CO₂ GWP 1 CH₄ GWP 25

Koch Methanol St. James, LLC KMe Facility Admin Building Emergency Generator Emission Calculations

SOURCE INFORMATION

Source Description:	Admin Building Emergency Generator
Source ID No.	EGEN2
Tempo ID No.	EQT 0026

Calculation Date: 1/10/2023 Calculated by: JLS/MR Reviewed by: AHN

Description:

The Admin Building Emergency Generator will provide electric power in case of a power failure and will be tested weekly for readiness and maintenance. Emissions from non-emergency use only are included for permitting.

Parameter	Basis Ur	nit Source
Fuel:	Natural Gas	
Rating:	125 kW	Generator Name Plate
Rating:	210 hp	Conversion from kW assuming 80% Efficiency
Fuel Consumption Rate:	1665.6 SCFH	Vendor data
Heat Input:	1.59 MMBtu/hr	Vendor data
	159.02 MMBtu/yr	Calculated based on heat input (MMBtu/hr) and Hours of Operations (hr/yr)
Hours of Operation:	100 hrs/yr	Max hrs for non-emergency use per NSPS/NESHAP

Summary of Criteria Pollutant Emissions:

Pollutant	Emission Factor ¹		Hourly Emissions ² (lb/hr)	Annual Emissions (ton/yr)
NO _x	2.00	g/HP-hr	0.92	0.05
CO	4.00	g/HP-hr	1.85	0.09
SO ₂	5.88E-04	lb/MMBtu	0.0009	4.68E-05
PM ₁₀	9.99E-03	lb/MMBtu	0.02	7.94E-04
PM _{2.5}	9.99E-03	lb/MMBtu	0.02	7.94E-04
VOC	1.00	g/HP-hr	0.46	0.02

Koch Methanol St. James, LLC KMe Facility Admin Building Emergency Generator Emission Calculations

SOURCE INFORMATION

Source Description: Admin Building Emergency Generator Source ID No. EGEN2 Tempo ID No. EQT 0026 Calculation Date: 1/10/2023 Calculated by: JLS/MR Reviewed by: AHN

Summary of Speciated VOC Emissions:

	Emission	Hourly	Annual			
Pollutant	Factor ¹	Emissions ²	Emissions	EIQ Threshold		Requires
	(lb/MMBtu)	(lb/hr)	(ton/yr)	(tpy)	HAP/TAP?	Permitting?
1,1,2,2-Tetrachloroethane	4.00E-05	6.36E-05	3.18E-06	5.00E-04	YES	NO
1,1,2-Trichloroethane	3.18E-05	5.06E-05	2.53E-06	5.00E-04	YES	NO
1,1-Dichloroethane	2.36E-05	3.75E-05	1.88E-06	5.00E-04	YES	NO
1,2,3-Trimethylbenzene	2.30E-05	3.66E-05	1.83E-06	5.00E-04	NO	NO
1,2,4-Trimethylbenzene	1.43E-05	2.27E-05	1.14E-06	5.00E-04	NO	NO
1,2-Dichloroethane	2.36E-05	3.75E-05	1.88E-06	5.00E-04	YES	NO
1,2-Dichloropropane	2.69E-05	4.28E-05	2.14E-06	5.00E-04	YES	NO
1,3,5-Trimethylbenzene	3.38E-05	5.37E-05	2.69E-06	5.00E-04	NO	NO
1,3-Butadiene	2.67E-04	4.25E-04	2.12E-05	5.00E-04	YES	NO
1,3-Dichloropropene	2.64E-05	4.20E-05	2.10E-06	5.00E-04	YES	NO
2-Methylnaphthalene	3.32E-05	5.28E-05	2.64E-06	5.00E-04	YES	NO
2,2,4-Trimethylpentane	2.50E-04	3.98E-04	1.99E-05	5.00E-04	YES	NO
Acenaphthene	1.25E-06	1.99E-06	9.94E-08	5.00E-04	YES	NO
Acenaphthylene	5.53E-06	8.79E-06	4.40E-07	5.00E-04	YES	NO
Acetaldehyde	8.36E-03	1.33E-02	6.65E-04	5.00E-04	YES	YES
Acrolein	5.14E-03	8.17E-03	4.09E-04	5.00E-04	YES	NO
Benzene	4.40E-04	7.00E-04	3.50E-05	5.00E-04	YES	NO
Benzo(b)fluoranthene	1.66E-07	2.64E-07	1.32E-08	5.00E-04	YES	NO
Benzo(e)pyrene	4.15E-07	6.60E-07	3.30E-08	5.00E-04	YES	NO
Benzo(g,h,l)perylene	4.14E-07	6.58E-07	3.29E-08	5.00E-04	YES	NO
Biphenyl	2.12E-04	3.37E-04	1.69E-05	5.00E-04	YES	NO
Butane	5.41E-04	8.60E-04	4.30E-05	5.00E-04	NO	NO
Butyr/Isobutyraldehyde	1.01E-04	1.61E-04	8.03E-06	5.00E-04	NO	NO
Carbon Tetrachloride	3.67E-05	5.84E-05	2.92E-06	5.00E-04	YES	NO
Chlorobenzene	3.04E-05	4.83E-05	2.42E-06	5.00E-04	YES	NO
Chloroethane	1.87E-06	2.97E-06	1.49E-07	5.00E-04	YES	NO
Chloroform	2.85E-05	4.53E-05	2.27E-06	5.00E-04	YES	NO
Chrysene	6.93E-07	1.10E-06	5.51E-08	5.00E-04	YES	NO
Cyclopentane	2.27E-04	3.61E-04	1.80E-05	5.00E-04	NO	NO
Ethane	1.05E-01	1.67E-01	8.35E-03	5.00E-04	NO	NO
Ethylbenzene	3.97E-05	6.31E-05	3.16E-06	5.00E-04	YES	NO
Ethylene Dibromide	4.43E-05	7.04E-05	3.52E-06	5.00E-04	YES	NO
Fluoranthene	1.11E-06	1.77E-06	8.83E-08	5.00E-04	YES	NO
Fluorene	5.67E-06	9.02E-06	4.51E-07	5.00E-04	YES	NO
Formaldehyde	5.28E-02	8.40E-02	4.20E-03	5.00E-04	YES	YES
Methanol	2.50E-03	3.98E-03	1.99E-04	5.00E-04	YES	NO
Methylcyclohexane	1.23E-03	1.96E-03	9.78E-05	5.00E-04	NO	NO
Methylene Chloride	2.00E-05	3.18E-05	1.59E-06	5.00E-04	YES	NO
n-Hexane	1.11E-03	1.77E-03	8.83E-05	5.00E-04	YES	NO
n-Nonane	1.10E-04	1.75E-04	8.75E-06	5.00E-04	NO	NO
n-Octane	3.51E-04	5.58E-04	2.79E-05	5.00E-04	NO	NO
n-Pentane	2.60E-03	4.13E-03	2.07E-04	5.00E-04	NO	NO
Naphthalene	7.44E-05	1.18E-04	5.92E-06	5.00E-04	YES	NO
PAH	2.69E-05	4.28E-05	2.14E-06	5.00E-04	YES	NO
Phenanthrene	1.04E-05	1.65E-05	8.27E-07	5.00E-04	YES	NO
Phenol	2.40E-05	3.82E-05	1.91E-06	5.00E-04	YES	NO
Propane	4.19E-02	6.66E-02	3.33E-03	5.00E-04	NO	NO
Pyrene	1.36E-06	2.16E-06	1.08E-07	5.00E-04	YES	NO
Styrene	2.36E-05	3.75E-05	1.88E-06	5.00E-04	YES	NO
Tetrachloroethane	2.48E-06	3.94E-06	1.97E-07	5.00E-04	YES	NO
Toluene	4.08E-04	6.49E-04	3.24E-05	5.00E-04	YES	NO
Vinyl Chloride	1.49E-05	2.37E-05	1.18E-06	5.00E-04	YES	NO
Xylene	1.84E-04	2.93E-04	1.46E-05	5.00E-04	YES	NO

Koch Methanol St. James, LLC KMe Facility Admin Building Emergency Generator Emission Calculations

SOURCE INFORMATION

Source Description: Admin Building Emergency Generator Source ID No. EGEN2 Tempo ID No. EQT 0026 Calculation Date: 1/10/2023 Calculated by: JLS/MR Reviewed by: AHN

Summary of GHG Emissions: Fuel Combustion (40 CFR 98 Subpart C)

Pollutant	Emission Factor (kg/MMBtu) ³	Emissions (metric tons/yr) ⁴	Emissions (US tons/yr) ⁵
CO ₂	53.06	8.4	9.30
CH₄	1.0E-03	1.59E-04	1.75E-04
N ₂ O	1.0E-04	1.59E-05	1.75E-05
CO ₂ e ⁶		8.45	9

Notes:

1. The NSPS JJJJ Emissions Standards for Emergency Engines HP>130 listed in Table 1 of Subpart JJJJ are used to estimate emissions of NOX, CO, and VOC. Emission factors from EPA AP-42 Section 3.2: Natural Gas-fired Reciprocating Engines, Table 3.2-2: Uncontrolled Emission Factors

for 4-Stroke Lean-Burn Engines are used to estimate emissions for all other pollutants.

2. Average and maximum hourly emissions are equal since emissions are based on the maximum hourly heat input rating.

3. Based on EPA default factors in Subpart C Tables C-1 and C-2 for Distillate Fuel Oil No. 2.

4. Calculated based on the heat input, emission factors, and equations C-1b and C-8b of Subpart C. CO2e based on Subpart A Table A-1 factors.

CO₂, CH₄, or N₂O (metric tpy) = 1E-03 * Gas (MMBtu/yr) * Emission Factor (kg/MMBtu)

5. 1 metric ton = 1.102 US ton

6. $CO_2e = CO_2$, CH_4 , or N_2O (tpy) * Global Warming Potential factor (GWP). GWPs revised 11/29/2013.

CO ₂ GWP	1
CH_4 GWP	25
N ₂ O GWP	298

SOURCE INFORMATION	
Source Description: Methanol Transfer and Product Tank CAP	Calculation Date: 1/26/2023
Source ID No. MTPCAP	Calculated by: AHN
Tempo ID No. GRP TBD	Reviewed by: MR

The Methanol Transfer and Product Tank Cap (MTPCAP) accounts for emissions from the four (4) methanol product tanks as well as emissions from truck and railcar loading operations, tank cleanings, and tank landings. Please refer to the following worksheets for detailed emission estimates for each of these activities.

Summary of Pollutant Emissions for MTPCAP

Pollutant	Average Emissions (Ib/hr)	Annual Emissions (tpy)
NO _X	5.50	24.09
CO	1.81	7.94
PM/PM ₁₀ /PM _{2.5}	0.16	0.72
SO ₂	0.01	0.06
Total VOC*	6.36	27.88
Methanol	6.23	27.29
Formaldehyde	0.001	0.006
Hexane	0.03	0.148
Zinc	0.001	0.002
CO ₂ e	-	11,282

*Includes methanol, formaldehyde, and hexane.

Koch Methanol St. James, LLC KMe Facility Methanol Storage Tanks Emissions Summary

Methanol Storage Tanks Summary

Methanol will be stored in four internal floating roof tanks (EPNs TK-26-202A, TK-26-202B, TK-26-202C, TK-26-202D). Emissions from the product storage tanks emissions were determined using the AP-42 Chapter 7 Calculation Methodology. The total annual throughput was divided evenly between the four (4) product tanks, which is worst case as compared to total throughput through one tank or divided between two or three tanks. Actual throughput may vary among the four tanks. For a conservative representation, each tank is represented to have a storage temperature of 91.3 F for the entire year, which is the average maximum ambient temperature for August in Baton Rouge, LA.

Parameter	Basis	Units	Source
Chemical Stored	Methanol	-	Project Design Basis
Volume	14,221,200	gal	Project Design Basis
Diameter	220	ft	Project Design Basis
Total Annual Throughput	754,551,010	gal/yr	M1 Plant Methanol Throughput
Annual Throughput per tank	188,637,753	gal/yr	Project Design Basis
Annual Turnovers per tank	13.3	gal/yr	Process Design Basis (tank volume divided by annual throughput per tank)
Storage Temperature	91.3	°⊏	Average daily maximum ambient temperature (T_{AX}) for August in Baton Rouge, LA
Storage Temperature	91.5	Г	(AP-42, Table 7.1-7).
Number of Tanks	4		Project Design Basis
Hours of Operation	8,760	hr/yr	Hourly emission rate is based on 24 hr/day and 365 day/yr

Emissions Summary (All Tanks)

Pollutant	Emissions (lb/yr)	Average Hourly (lb/hr)	Annual Emissions (tpy)
Total VOC	18,547	2.12	9.27
Methanol	18,547	2.12	9.27

SOURCE INFORMATION

 Source Description: Methanol Product Tank 2301
 Calculation I

 Source ID No. TK-26-202A
 Calculate

 Tempo ID No. EQT TBD
 Reviewee

Calculation Date: 9/9/2022 Calculated by: MO Reviewed by: AG

Table 1 - Calculation Constants

Description	Value	Units	Notes
α _s - Shell Paint Solar Absorptance	0.25	dimensionless	AP-42, Chapter 7 - Table 7.1-6
α _R - Roof Paint Solar Absorptance	0.25	dimensionless	AP-42, Chapter 7 - Table 7.1-6
α _T - Average Paint Solar Absorptance	0.25	dimensionless	Average of shell paint and roof paint solar absorptances
I - Daily Total Solar Insolation Factor	1428	dimensionless	AP-42, Chapter 7 - Table 7.1-7 for Baton Rouge, LA
T _{AX} - Daily Maximum Ambient Temperature	551.30	R	AP-42, Chapter 7 - Table 7.1-7 for Baton Rouge, LA (August)
T _{AN} - Daily Minimum Ambient Temperature	529.30	R	Based on measured data
R - Ideal Gas Constant	10.731	psia*ft3/lb-mole R	AP-42, Chapter 7 - Page 7.1-23
K _c - Product Factor	1	dimensionless	0.4 for Crude Oil; 1 for all other organic liquids (Note to Eqn. 2- 4)
C _s - Shell Clingage Factor	0.0015	bbl/1000 ft ²	0.006 for Crude Oil; 0.0015 for others (Table 7.1-10 for Light Rust)
ΔP _V - Daily Vapor Pressure Range	0.93	psia	AP-42, Chapter 7 - Equation 1-9
P _A - Atmospheric Pressure	14.69	psia	

Table 2 - Tank Configuration

Description	Unit	Units	Notes
D _s - Shell Diameter	220	feet	
H _s - Shell Height	50	feet	
Tank Capacity	13,450,794	gallons	
L _{SEAM} - Total Length of Deck Seams	0	feet	
Construction Type (Tank/Deck)	Welded/Welded		
Rim Seal	Mechanical Shoe		
Rim Seal Type	Rim-Mounted Secondary		
Fitting Tightness	Average-Fitting		
K _{Ra} - Zero Wind Speed Rim Seal Loss Factor	0.6	lb-mole/ft-yr	
S _D - Deck Seam Length Factor	0.000	ft/ft ²	
K _D - Deck Seam Loss Factor	0	lb-mole/ft-yr	

Fittings	Туре	Number	Notes
Access Hatch	Bolted cover, gasketed	4	
Support Column Well	Round pipe, gasketed sliding cover	25	
Guide Pole	Slotted-Gasketed sliding cover, with pole sleeve	2	
Gauge Float Well	Bolted cover, gasketed	0	
Gauge Hatch	Slit fabric seal, 10% open area	2	
Vacuum Breaker	Weighted mechanical actuation, gasketed	4	
Deck Drain	90% closed	0	
Deck Leg	Adjustable, internal floating deck	207	
Deck Leg			
Rim Vent	Weighted mechanical actuation, ungasketed	0	
Ladder Well	Sliding cover, gasketed	1	
Stub Drain	Stub drain (1-inch diameter)	39	
F _C - Effective Column Diameter	1		AP-42, Chapter 7 - Page 7.1-37 (1.1 for 9"x7" built-up column; 0.7 for 8"-diam pipe column; 1.0 if unknown)

SOURCE INFORMATION

Source Description: Methanol Product Tank 2301 Source ID No. TK-26-202A Tempo ID No. EQT TBD Calculation Date: 9/9/2022 Calculated by: MO Reviewed by: AG

Description	Value	Units	Notes
V _{LX} - Tank Maximum Liquid Volume	1,798,109.61	ft³	
P_{VN} - Vapor Pressure at Minimum Daily Liquid Surface Tempera	2.49	psia	AP-42, Chapter 7 - Equation 1-24
P _{VA} - Vapor Pressure at Average Daily Liquid Surface Temperat	2.92	psia	AP-42, Chapter 7 - Equation 1-24
P_{VX} - Vapor Pressure at Maximum Daily Liquid Surface Tempera	3.42	psia	AP-42, Chapter 7 - Equation 1-24
M _V - Vapor Molecular Weight	32.04	lb/lb.mole	For Methyl alcohol
W _L - Liquid Density	6.63	lb/gal	For Methyl alcohol
Q - Throughput	4,491,375.06	bbl/yr	188,637,753 gallons/year

Table 4 - Calculated Values

Description	Value	Units	Notes
K _E - Vapor Space Expansion Factor	0.1205	dimensionless	AP-42, Chapter 7 - Equation 1-5
ΔT_{v} - Daily Vapor Temperature Range	22.54	R	AP-42, Chapter 7 - Equation 1-7
ΔT _A - Daily Ambient Temperature Range	22.00	R	AP-42, Chapter 7 - Equation 1-11
P* - Vapor Pressure Function	5.538E-02	dimensionless	AP-42, Chapter 7 - Equation 2-4
T _{LN} - Daily Minimum Liquid Surface Temperature	537.05	R	AP-42, Chapter 7 - Figure 7.1-17
T _{LA} - Daily Average Liquid Surface Temperature	542.69	R	AP-42, Chapter 7 - Equation 2-5
T _{LX} - Daily Maximum Liquid Surface Temperature	548.32	R	AP-42, Chapter 7 - Figure 7.1-17
T _{AA} - Daily Average Ambient Temperature	540.30	R	AP-42, Chapter 7 - Equation 1-30
T _B - Liquid Bulk Temperature	541.37	R	AP-42, Chapter 7 - Equation 1-31
N - Number of Turnovers	14.02	dimensionless	
F _F - Total Deck Fitting Loss factor	2,440.30	lb-mole/yr	AP-42, Chapter 7 - Equation 2-14

Table 4 - Calculated Emissions

Description	Value	Units	Notes
L _R - Rim Seal Loss	234.20	lbs/yr	AP-42, Chapter 7 - Equation 2-3
L _F - Deck Fitting Loss	4,329.65	lbs/yr	AP-42, Chapter 7 - Equation 2-13
L _D - Deck Seam Loss	0.00	lbs/yr	AP-42, Chapter 7 - Equation 2-18
L _s - Total Standing Loss	4,563.85	lbs/yr	AP-42, Chapter 7 - Equation 2-2
L _{WD} - Withdrawal Loss	213.21	lbs/yr	AP-42, Chapter 7 - Equation 2-19
L _T - Total Loss	4,777.07	lbs/yr	AP-42, Chapter 7 - Equation 2-1

Table 5 - Speciated Emissions per tank

		Emissions	
Pollutant	Wt. %	lb/yr	tpy
Total VOC	100%	4,777.07	2.39
Methanol	100%	4,777.07	2.39

SOURCE INFORMATION

Source Description: Methanol Product Tank 2302 Source ID No. TK-26-202B Tempo ID No. EQT TBD Calculation Date: 9/9/2022 Calculated by: MO Reviewed by: AG

Table 1 - Calculation Constants

Description	Value	Units	Notes
α _s - Shell Paint Solar Absorptance	0.25	dimensionless	AP-42, Chapter 7 - Table 7.1-6
α _R - Roof Paint Solar Absorptance	0.25	dimensionless	AP-42, Chapter 7 - Table 7.1-6
α _T - Average Paint Solar Absorptance	0.25	dimensionless	Average of shell paint and roof paint solar absorptances
I - Daily Total Solar Insolation Factor	1428	dimensionless	AP-42, Chapter 7 - Table 7.1-7 for Baton Rouge, LA
T _{AX} - Daily Maximum Ambient Temperature	551.30	R	AP-42, Chapter 7 - Table 7.1-7 for Baton Rouge, LA (August)
T _{AN} - Daily Minimum Ambient Temperature	527.20	R	Based on measured data
R - Ideal Gas Constant	10.731	psia*ft3/lb-mole R	AP-42, Chapter 7 - Page 7.1-23
K _c - Product Factor	1	dimensionless	0.4 for Crude Oil; 1 for all other organic liquids (Note to Eqn. 2-4)
C _s - Shell Clingage Factor	0.0015	bbl/1000 ft ²	0.006 for Crude Oil; 0.0015 for others (Table 7.1-10 for Light Rust)
ΔP _V - Daily Vapor Pressure Range	0.97	psia	AP-42, Chapter 7 - Equation 1-9
P _A - Atmospheric Pressure	14.69	psia	

Table 2 - Tank Configuration

Description	Value	Units	Notes
D _s - Shell Diameter	220	feet	
H _s - Shell Height	50	feet	
Tank Capacity	13,450,794	gallons	
L _{SEAM} - Total Length of Deck Seams	0	feet	
Construction Type (Tank/Deck)	Welded/Welded		
Rim Seal	Mechanical Shoe		
Rim Seal Type	Rim-Mounted Secondary		
Fitting Tightness	Average-Fitting		
K _{Ra} - Zero Wind Speed Rim Seal Loss Factor	0.6	lb-mole/ft-yr	
S _D - Deck Seam Length Factor	0.000	ft/ft ²	
K _D - Deck Seam Loss Factor	0	lb-mole/ft-yr	

Fittings	Туре	Number	Notes
Access Hatch	Bolted cover, gasketed	4	
Support Column Well	Round pipe, gasketed sliding cover	25	Nc
Guide Pole	Slotted-Gasketed sliding cover, with pole sleeve	2	
Gauge Float Well	Bolted cover, gasketed	0	
Gauge Hatch	Slit fabric seal, 10% open area	2	
Vacuum Breaker	Weighted mechanical actuation, gasketed	4	
Deck Drain	90% closed	0	
Deck Leg	Adjustable, internal floating deck	207	
Deck Leg			
Rim Vent	Weighted mechanical actuation, ungasketed	0	
Ladder Well	Sliding cover, gasketed	1	
Stub Drain	diameter)	39	
F _C - Effective Column Diameter	1		AP-42, Chapter 7 - Page 7.1-37 (1.1 for 9"x7" built-up column; 0.7 for 8"-diam pipe column; 1.0 if unknown)

SOURCE INFORMATION						
Source Description: Methanol Product Tank 2302			Calculation Date: 9/9/2022			
Source ID No. TK-26-202B			Calculated by: MO			
Tempo ID No. EQT TBD			Reviewed by: AG			
Table 3 - Calculation Inputs						
Description	Value	Units	Notes			
V _{LX} - Tank Maximum Liquid Volume	1,798,109.61	ft ³				
P_{VN} - Vapor Pressure at Minimum Daily Liquid Surface Temperatur	2.39	psia	AP-42, Chapter 7 - Equation 1-24			
P_{VA} - Vapor Pressure at Average Daily Liquid Surface Temperature	2.84	psia	AP-42, Chapter 7 - Equation 1-24			
P_{VX} - Vapor Pressure at Maximum Daily Liquid Surface Temperatu	3.35	psia	AP-42, Chapter 7 - Equation 1-24			
M _V - Vapor Molecular Weight	32.04	lb/lb.mole	For Methyl alcohol			
W _L - Liquid Density	6.63	lb/gal	For Methyl alcohol			
Q - Throughput	4,491,375.06	bbl/yr	188,637,753 gallons/year			

Table 4 - Calculated Values

Description	Value	Units	Notes
K _E - Vapor Space Expansion Factor	0.1258	dimensionless	AP-42, Chapter 7 - Equation 1-5
ΔT_v - Daily Vapor Temperature Range	24.01	R	AP-42, Chapter 7 - Equation 1-7
ΔT_A - Daily Ambient Temperature Range	24.10	R	AP-42, Chapter 7 - Equation 1-11
P* - Vapor Pressure Function	5.358E-02	dimensionless	AP-42, Chapter 7 - Equation 2-4
T _{LN} - Daily Minimum Liquid Surface Temperature	535.64	R	AP-42, Chapter 7 - Figure 7.1-17
T _{LA} - Daily Average Liquid Surface Temperature	541.64	R	AP-42, Chapter 7 - Equation 2-5
T _{LX} - Daily Maximum Liquid Surface Temperature	547.64	R	AP-42, Chapter 7 - Figure 7.1-17
T _{AA} - Daily Average Ambient Temperature	539.25	R	AP-42, Chapter 7 - Equation 1-30
T _B - Liquid Bulk Temperature	540.32	R	AP-42, Chapter 7 - Equation 1-31
N - Number of Turnovers	14.02	dimensionless	
F _F - Total Deck Fitting Loss factor	2,440.30	lb-mole/yr	AP-42, Chapter 7 - Equation 2-14

Table 4 - Calculated Emissions

Description	Value	Units	Notes
L _R - Rim Seal Loss	226.58	lbs/yr	AP-42, Chapter 7 - Equation 2-3
L _F - Deck Fitting Loss	4,188.89	lbs/yr	AP-42, Chapter 7 - Equation 2-13
L _D - Deck Seam Loss	0.00	lbs/yr	AP-42, Chapter 7 - Equation 2-18
L _S - Total Standing Loss	4,415.47	lbs/yr	AP-42, Chapter 7 - Equation 2-2
L _{WD} - Withdrawal Loss	213.21	lbs/yr	AP-42, Chapter 7 - Equation 2-19
L _T - Total Loss	4,628.69	lbs/yr	AP-42, Chapter 7 - Equation 2-1

Table 5 - Speciated Emissions per tank

		Emissions	
Pollutant	Wt. %	lb/yr	tpy
Total VOC	100%	4,628.69	2.31
Methanol	100%	4,628.69	2.31

SOURCE INFORMATION

Source Description: Methanol Product Tank 2303 Source ID No. TK-26-202C Tempo ID No. EQT TBD Calculation Date: 9/9/2022 Calculated by: MO Reviewed by: AG

Description	Value	Units	Notes	
α_{S} - Shell Paint Solar Absorptance	0.25	dimensionless	AP-42, Chapter 7 - Table 7.1-6	
α _R - Roof Paint Solar Absorptance	0.25	dimensionless	AP-42, Chapter 7 - Table 7.1-6	
α _T - Average Paint Solar Absorptance	0.25	dimensionless	Average of shell paint and roof paint solar absorptances	
I - Daily Total Solar Insolation Factor	1428	dimensionless	AP-42, Chapter 7 - Table 7.1-7 for Baton Rouge, LA	
T _{AX} - Daily Maximum Ambient Temperature	551.30	R	AP-42, Chapter 7 - Table 7.1-7 for Baton Rouge, LA (August)	
T _{AN} - Daily Minimum Ambient Temperature	525.10	R	Based on measured data	
R - Ideal Gas Constant	10.731	psia*ft3/lb-mole R	AP-42, Chapter 7 - Page 7.1-23	
K _c - Product Factor	1	dimensionless	0.4 for Crude Oil; 1 for all other organic liquids (Note to Eqn. 2-4)	
C_s - Shell Clingage Factor	0.0015	bbl/1000 ft ²	0.006 for Crude Oil; 0.0015 for others (Table 7.1-10 for Light Rus	
ΔP _V - Daily Vapor Pressure Range	1.00	psia	AP-42, Chapter 7 - Equation 1-9	
P _A - Atmospheric Pressure	14.69	psia		

Description	Value	Units	Notes
D _S - Shell Diameter	220	feet	
H _S - Shell Height	50	feet	
Tank Capacity	13,450,794	gallons	
L _{SEAM} - Total Length of Deck Seams	0	feet	
Construction Type (Tank/Deck)	Welded/Welded		
Rim Seal	Mechanical Shoe		
Rim Seal Type	Rim-Mounted Secondary		
Fitting Tightness	Average-Fitting		
K _{Ra} - Zero Wind Speed Rim Seal Loss Factor	0.6	lb-mole/ft-yr	
S _D - Deck Seam Length Factor	0.000	ft/ft ²	
K _D - Deck Seam Loss Factor	0	lb-mole/ft-yr	

Fittings	Туре	Number	Notes
Access Hatch	Bolted cover, gasketed	4	
Support Column Well	Round pipe, gasketed sliding cover	25	Nc
Guide Pole	Slotted-Gasketed sliding cover, with pole sleeve	2	
Gauge Float Well	Bolted cover, gasketed	0	
Gauge Hatch	Slit fabric seal, 10% open area	2	
Vacuum Breaker	Weighted mechanical actuation, gasketed	4	
Deck Drain	90% closed	0	
Deck Leg	Adjustable, internal floating deck	207	
Deck Leg			
Rim Vent	Weighted mechanical actuation, ungasketed	0	
Ladder Well	Sliding cover, gasketed	1	
Stub Drain	Stub drain (1-inch diameter)	39	
F _C - Effective Column Diameter	1		AP-42, Chapter 7 - Page 7.1-37 (1.1 for 9"x7" built-up column; 0.7 for 8"-diam pipe column; 1.0 if unknown)

SOURCE INFORMATION					
Source Description:	Methanol Product Tank 2	303	Calculation Date: 9/9/2022		
Source ID No. TK-26-202C			Calculated by: MO		
Tempo ID No. EQT TBD			Reviewed by: AG		
Table 3 - Calculation Inputs					
Description	Unit	Units	Notes		
V _{LX} - Tank Maximum Liquid Volume	1,798,109.61	ft ³			
P_{VN} - Vapor Pressure at Minimum Daily Liquid Surface Temperature	2.29	psia	AP-42, Chapter 7 - Equation 1-24		
P_{VA} - Vapor Pressure at Average Daily Liquid Surface Temperature	2.75	psia	AP-42, Chapter 7 - Equation 1-24		
P_{VX} - Vapor Pressure at Maximum Daily Liquid Surface Temperature	3.29	psia	AP-42, Chapter 7 - Equation 1-24		
M _V - Vapor Molecular Weight	32.04	lb/lb.mole	For Methyl alcohol		
W _L - Liquid Density	6.63	lb/gal	For Methyl alcohol		
Q - Throughput	4,491,375.06	bbl/yr	188,637,753 gallons/year		
Table 4 - Calculated Values		- I.u	<u>h.</u>		
Description	Unit	Units	Notes		
K _E - Vapor Space Expansion Factor	0.1309	dimensionless	AP-42, Chapter 7 - Equation 1-5		
ΔT _v - Daily Vapor Temperature Range	25.48	R	AP-42, Chapter 7 - Equation 1-7		
ΔT _A - Daily Ambient Temperature Range	26.20	R	AP-42, Chapter 7 - Equation 1-11		
P* - Vapor Pressure Function	5.183E-02	dimensionless	AP-42, Chapter 7 - Equation 2-4		
T _{LN} - Daily Minimum Liquid Surface Temperature	534.22	R	AP-42, Chapter 7 - Figure 7.1-17		
TLA - Daily Average Liguid Surface Temperature	540.59	R	AP-42, Chapter 7 - Equation 2-5		
T _{LX} - Daily Maximum Liquid Surface Temperature	546.96	R	AP-42, Chapter 7 - Figure 7.1-17		
T _{LX} - Daily Maximum Liquid Surface Temperature T _{AA} - Daily Average Ambient Temperature	546.96 538.20	R R	AP-42, Chapter 7 - Figure 7.1-17 AP-42, Chapter 7 - Equation 1-30		
T _{AA} - Daily Average Ambient Temperature	538.20	R	AP-42, Chapter 7 - Equation 1-30		

Table 4 - Calculated Emissions

Description	Unit	Units	Notes	
L _R - Rim Seal Loss	219.21	lbs/yr	AP-42, Chapter 7 - Equation 2-3	
L _F - Deck Fitting Loss	4,052.59	lbs/yr	AP-42, Chapter 7 - Equation 2-13	
L _D - Deck Seam Loss	0.00	lbs/yr	AP-42, Chapter 7 - Equation 2-18	
L _S - Total Standing Loss	4,271.80	lbs/yr	AP-42, Chapter 7 - Equation 2-2	
L _{WD} - Withdrawal Loss	213.21	lbs/yr	AP-42, Chapter 7 - Equation 2-19	
L _T - Total Loss	4,485.02	lbs/yr	AP-42, Chapter 7 - Equation 2-1	

Table 5 - Speciated Emissions per tank

		Emissions	
Pollutant	Wt. %	lb/yr	tpy
Total VOC	100%	4,485.02	2.24
Methanol	100%	4,485.02	2.24

RAMBOLL

Koch Methanol St. James, LLC KMe Facility Methanol Product Tank Emission Calculations

SOURCE INFORMATION				
	: Methanol Product Tank 230	4	Calculation Date: 9/9/2022	
Source ID No	+	Calculated by: MO		
Tempo ID No. EQT TBD			Reviewed by: AG	
			Reviewed by. AG	
Table 1 - Calculation Constants			I. .	
Description	Value	Units	Notes	
α _S - Shell Paint Solar Absorptance	0.25	dimensionless	AP-42, Chapter 7 - Table 7.1-6	
α _R - Roof Paint Solar Absorptance	0.25	dimensionless	AP-42, Chapter 7 - Table 7.1-6	
α _T - Average Paint Solar Absorptance	0.25	dimensionless	Average of shell paint and roof paint solar absorptances	
I - Daily Total Solar Insolation Factor	1428	dimensionless	AP-42, Chapter 7 - Table 7.1-7 for Baton Rouge, LA	
T _{AX} - Daily Maximum Ambient Temperature	551.30	R	AP-42, Chapter 7 - Table 7.1-7 for Baton Rouge, LA (August)	
T _{AN} - Daily Minimum Ambient Temperature	527.60	R	Based on measured data	
R - Ideal Gas Constant	10.731	psia*ft3/lb-mole R	AP-42, Chapter 7 - Page 7.1-23	
K _c - Product Factor	1	dimensionless	0.4 for Crude Oil; 1 for all other organic liquids (Note to Eqn. 2-4)	
C _s - Shell Clingage Factor	0.0015	bbl/1000 ft ²	0.006 for Crude Oil; 0.0015 for others (Table 7.1-10 for Light Rust)	
ΔP _V - Daily Vapor Pressure Range	0.96	psia	AP-42, Chapter 7 - Equation 1-9	
P _A - Atmospheric Pressure	14.69	psia		
Table O. Taulo Osuffranción			•	
Table 2 - Tank Configuration	Value	11-140	Notes	
Description D _S - Shell Diameter	220	Units feet	Notes	
H _s - Shell Height	50	feet		
Tank Capacity	13,450,794	gallons		
L _{SEAM} - Total Length of Deck Seams	0	feet		
Construction Type (Tank/Deck)	Welded/Welded			
Rim Seal	Mechanical Shoe			
Rim Seal Type	Rim-Mounted Secondary			
Fitting Tightness	Average-Fitting			
K _{Ra} - Zero Wind Speed Rim Seal Loss Factor	0.6	lb-mole/ft-yr		
S _D - Deck Seam Length Factor	0.000	ft/ft ²		
K _D - Deck Seam Loss Factor	0	lb-mole/ft-yr		
Fittings	Туре	Number	Notes	
Access Hatch	Bolted cover, gasketed Round pipe, gasketed	4		
Support Column Well	sliding cover	25	N _C	
	Slotted-Gasketed sliding			
Guide Pole	cover, with pole sleeve	2		
Gauge Float Well	Bolted cover, gasketed	0		
Gauge Hatch	Slit fabric seal, 10% open	2		
	area	۷		
Vacuum Breaker	Weighted mechanical	4		
	actuation, gasketed 90% closed			
Deck Drain	90% closed Adjustable, internal floating	0		
Deck Leg	deck	207		
Deck Leg				
	Weighted mechanical	^		
Rim Vent	actuation, ungasketed	0		
Ladder Well	Sliding cover, gasketed	1		
Stub Drain	Stub drain (1-inch diameter)	39		
F _c - Effective Column Diameter	1		AP-42, Chapter 7 - Page 7.1-37 (1.1 for 9"x7" built-up column; 0.7 for 8"-	
-			diam pipe column; 1.0 if unknown)	

RAMBOLL

Koch Methanol St. James, LLC **KMe Facility** Methanol Product Tank Emission Calculations

Source Description: Methanol Product Tank 2304			Calculation Date: 9/9/2022		
Source ID No. TK-26-202D Tempo ID No. EQT TBD			Calculated by: MO Reviewed by: AG		
Table 3 - Calculation Inputs			Reviewed by. AG		
Description	Unit	Units	Notes		
V _{LX} - Tank Maximum Liquid Volume	1,798,109.61	ft ³			
P _{VN} - Vapor Pressure at Minimum Daily Liquid Surface Temperatur	2.41	psia	AP-42, Chapter 7 - Equation 1-24		
P _{VA} - Vapor Pressure at Average Daily Liquid Surface Temperature	2.85	psia	AP-42, Chapter 7 - Equation 1-24		
P _{VX} - Vapor Pressure at Maximum Daily Liquid Surface Temperatu	3.37	psia	AP-42, Chapter 7 - Equation 1-24		
M _V - Vapor Molecular Weight	32.04	lb/lb.mole	For Methyl alcohol		
W _L - Liquid Density	6.63	lb/gal	For Methyl alcohol		
Q - Throughput	4,491,375.06	bbl/yr	188,637,753 gallons/year		

Description	Unit	Units	Notes
K _E - Vapor Space Expansion Factor	0.1248	dimensionless	AP-42, Chapter 7 - Equation 1-5
ΔT_V - Daily Vapor Temperature Range	23.73	R	AP-42, Chapter 7 - Equation 1-7
ΔT _A - Daily Ambient Temperature Range	23.70	R	AP-42, Chapter 7 - Equation 1-11
P* - Vapor Pressure Function	5.391E-02	dimensionless	AP-42, Chapter 7 - Equation 2-4
T _{LN} - Daily Minimum Liquid Surface Temperature	535.91	R	AP-42, Chapter 7 - Figure 7.1-17
T _{LA} - Daily Average Liquid Surface Temperature	541.84	R	AP-42, Chapter 7 - Equation 2-5
T _{LX} - Daily Maximum Liquid Surface Temperature	547.77	R	AP-42, Chapter 7 - Figure 7.1-17
T _{AA} - Daily Average Ambient Temperature	539.45	R	AP-42, Chapter 7 - Equation 1-30
T _B - Liquid Bulk Temperature	540.52	R	AP-42, Chapter 7 - Equation 1-31
N - Number of Turnovers	14.02	dimensionless	
F _F - Total Deck Fitting Loss factor	2,440.30	lb-mole/yr	AP-42, Chapter 7 - Equation 2-14

Table 4 - Calculated Emissions

Description	Unit	Units	Notes
L _R - Rim Seal Loss			AP-42, Chapter 7 - Equation 2-3
L _F - Deck Fitting Loss	4,215.35	lbs/yr	AP-42, Chapter 7 - Equation 2-13
L _D - Deck Seam Loss	0.00	lbs/yr	AP-42, Chapter 7 - Equation 2-18
L _S - Total Standing Loss	4,443.37	lbs/yr	AP-42, Chapter 7 - Equation 2-2
L _{WD} - Withdrawal Loss	213.21	lbs/yr	AP-42, Chapter 7 - Equation 2-19
L _T - Total Loss	4,656.58	lbs/yr	AP-42, Chapter 7 - Equation 2-1

Table 5 - Speciated Emissions per tank

		Emissions	
Pollutant	Wt. %	lb/yr	tpy
Total VOC	100%	4,656.58	2.33
Methanol	100%	4,656.58	2.33

Koch Methanol St. James, LLC KMe Facility Vapor Control Unit Emissions Summary

SOURCE INFORMATION

Source Description: Methanol Railcar and Tank Truck Loading Source ID No. RTLOAD Tempo ID No. EQT TBD Calculation Date: 1/26/2023 Calculated by: JLS Reviewed by: AHN

Description:

The Vapor Control Unit (VCU) is used to control captured emissions from railcar and truck loading operations. Total VCU emissions include combustion emissions resulting from the combustion of pilot gas, enrichment gas, and the gases routed to the VCU for control. The uncontrolled and controlled loading VOC/methanol emissions are calculated on the following worksheet.

Parameter	Basis Unit	Source
Methanol Vapor Stream Data		
Uncontrolled Vapor Rate	1,844.16 lb/hr	Uncontrolled maximum rate used for short term emissions
Uncontrolled Vapor Rate	1,593.25 tpy	Uncontrolled annual rate used for annual emissions
Methanol Heating Value, LHV	8,643 Btu/lb	Process Design Basis (1 Mj/kg =430 btu/lb, 20.1Mj/kg = 8,643 btu/lb)
Methanol Heating Value, HHV	9,847 Btu/lb	Process Design Basis (1 Mj/kg =430 btu/lb, 22.9Mj/kg = 9,847 btu/lb)
Hours of Operation	8,760 hr/yr	Maximum hours of operations
Maximum Heat Input	18.16 MMBtu/hr	Calculated value
Annual Heat Input	31,377 MMBtu/yr	Calculated value used for annual emissions
Natural Gas Pilot Data		
Flow Rate	1 scf/min	Process Design Basis
Natural Gas Heating Value	1,020 Btu/scf	EPA AP-42 Section 1.4 Natural Gas Combustion
Hours of Operation	8,760 hr/yr	Based on continuous operation, max hours per year
Maximum Heat Input	0.06 MMBtu/hr	Process Design Basis
Annual Heat Input	536.11 MMBtu/yr	Calculated value used for annual emissions
Assist/Enrichment Gas Data		
Average Flow Rate	300 scf/min	Process Design Basis
Maximum Flow Rate	311 scf/min	Process Design Basis
Natural Gas Heating Value	1,020 Btu/scf	EPA AP-42 Section 1.4 Natural Gas Combustion
Hours of Operation	8,760 hr/yr	Maximum hours of operations
Maximum Heat Input	19.03 MMBtu/hr	Calculated Value
Annual Heat Input	160,834 MMBtu/yr	Calculated value used for annual emissions
Total Heat Input for Loading		
VCU Maximum Heat Input	37.25 MMBtu/hr	Based on the sum of heat inputs from methanol vapors, natural gas pilot, and assist ga
VCU Annual Heat Input	192,747.10 MMBtu/yr	Calculated value used for annual emissions

Criteria Pollutants Combustion Emissions

Pollutant	Emission Factor (Ib/MMBtu)	Maximum Hourly Emissions (Ib/hr)	Annual Emissions (tpy)	Emission Factor Source
NO _x	2.50E-01	9.31	24.09	Vendor emission factor guarantee
со	8.24E-02	3.07	7.94	AP-42 Table 1.4-1
PM ₁₀ /PM _{2.5}	7.45E-03	0.28	0.72	AP-42 Table 1.4-2
SO ₂	5.88E-04	0.02	0.06	AP-42 Table 1.4-2
VOC (from pilot & enrichment gas) ¹	5.39E-03	0.10	0.44	AP-42 Table 1.4-2

Koch Methanol St. James, LLC KMe Facility Vapor Control Unit Emissions Summary

SOURCE INFORMATION

Source Description: Methanol Railcar and Tank Truck Loading Source ID No. RTLOAD Tempo ID No. EQT TBD

Speciated Combustion Emissions:1

	Emission Factors ²	Maximum	Annual Emissions	EIQ Threshold		Requires
Pollutant	lb/MMscf	Emissions (lb/hr)	(tpy)	(tpy)	HAP/TAP?	Permitting?
Organic HAPs			((47)		, constant gr
2-Methylnaphthalene	2.40E-05	4.49E-07	1.97E-06	5.00E-04	YES	NO
3-Methylchloranthrene	1.80E-06	3.37E-08	1.48E-07	5.00E-04	YES	NO
7,12-Dimethylbenz(a)nthracene	1.60E-05	3.00E-07	1.31E-06	5.00E-04	YES	NO
Acenaphthene	1.80E-06	3.37E-08	1.48E-07	5.00E-04	YES	NO
Acenaphthylene	1.80E-06	3.37E-08	1.48E-07	5.00E-04	YES	NO
Anthracene	2.40E-06	4.49E-08	1.97E-07	5.00E-04	YES	NO
Benz(a)thracene	1.80E-06	3.37E-08	1.48E-07	5.00E-04	YES	NO
Benzene	2.10E-03	3.93E-05	1.72E-04	5.00E-04	YES	NO
Benzo(a)pyrene	1.20E-06	2.25E-08	9.84E-08	5.00E-04	YES	NO
Benzo(b)fluoranthene	1.80E-06	3.37E-08	1.48E-07	5.00E-04	YES	NO
Benzo(g,h,i)perylene	1.20E-06	2.25E-08	9.84E-08	5.00E-04	YES	NO
Benzo(k)fluoranthene	1.80E-06	3.37E-08	1.48E-07	5.00E-04	YES	NO
Butane	2.10E+00	3.93E-02	1.72E-01	5.00E-04	NO	NO
Chrysene	1.80E-06	3.37E-08	1.48E-07	5.00E-04	YES	NO
Dibenzo(a,h)anthracene	1.20E-06	2.25E-08	9.84E-08	5.00E-04	YES	NO
Dichlorobenzene	1.20E-03	2.25E-05	9.84E-05	5.00E-04	YES	NO
Ethane	3.10E+00	5.80E-02	2.54E-01	5.00E-04	NO	NO
Fluoranthene	3.00E-06	5.62E-08	2.46E-07	5.00E-04	YES	NO
Fluorene	2.80E-06	5.24E-08	2.30E-07	5.00E-04	YES	NO
Formaldehyde	7.50E-02	1.40E-03	6.15E-03	5.00E-04	YES	YES
n-Hexane	1.80E+00	3.37E-02	1.48E-01	5.00E-04	YES	YES
ndeno(1,2,3-cd)pyrene	1.80E-06	3.37E-08	1.48E-07	5.00E-04	YES	NO
Naphthalene	6.10E-04	1.14E-05	5.00E-05	5.00E-04	YES	NO
Pentane	2.60E+00	4.87E-02	2.13E-01	5.00E-04	NO	NO
Phenanathrene	1.70E-05	3.18E-07	1.39E-06	5.00E-04	YES	NO
Propane	1.60E+00	3.00E-02	1.31E-01	5.00E-04	NO	NO
Pyrene	5.00E-06	9.36E-08	4.10E-07	5.00E-04	YES	NO
Toluene	3.40E-03	6.36E-05	2.79E-04	5.00E-04	YES	NO
Total PAH	0.402-00	1.20E-06	5.12E-06	5.00E-04	YES	NO
Metals		1.202-00	5.12L-00	3.00L-04	120	NO
Arsenic	2.00E-04	3.74E-06	1.64E-05	5.00E-04	YES	NO
Barium	4.40E-03	8.24E-05	3.61E-04	5.00E-04	YES	NO
Beryllium	1.20E-05	2.25E-07	9.84E-07	5.00E-04	YES	NO
Cadmium	1.10E-03	2.25E-07 2.06E-05	9.02E-05	5.00E-04	YES	NO
Chromium ³	1.40E-03	2.62E-05	9.02E-05	5.00E-04	YES	NO
Chromium VI ³		5.24E-06	2.30E-05	5.00E-04	NO	NO
Cobalt	8.40E-05	1.57E-06	6.89E-06	5.00E-04	YES	NO
Copper	8.50E-04	1.59E-05	6.97E-05	5.00E-04	YES	NO
Manganese	3.80E-04	7.11E-06	3.12E-05	5.00E-04	YES	NO
Mercury	2.60E-04	4.87E-06	2.13E-05	5.00E-04	YES	NO
Molybdenum	1.10E-03	2.06E-05	9.02E-05	5.00E-04	NO	NO
Nickel	2.10E-03	2.06E-05 3.93E-05	9.02E-05	5.00E-04	YES	NO
Selenium	2.10E-03	4.49E-07	1.97E-06	5.00E-04	YES	NO
/anadium	2.40E-03	4.49E-07 4.31E-05	1.89E-04	5.00E-04	NO	NO
Zinc	2.30E-03 2.90E-02	4.31E-05 5.43E-04	1.89E-04 2.38E-03	5.00E-04 5.00E-04	YES	YES
LING	2.90E-02	0.40E-04	2.30E-03	3.00E-04	IEƏ	TEO

Koch Methanol St. James, LLC KMe Facility Vapor Control Unit Emissions Summary

SOURCE INFORMATION

Source Description: Methanol Railcar and Tank Truck Loading Source ID No. RTLOAD Tempo ID No. EQT TBD Calculation Date: 1/26/2023 Calculated by: JLS Reviewed by: AHN

GHG Emissions:

Fuel Combustion (40 CFR 98 Subpart C)

	Emission Factor	Emissions	Emissions
Pollutant	(kg/MMBtu) ⁴	(metric tons/yr)5	(US tons/yr) ⁶
CO ₂	53.06	10,227.16	11,270.33
CH ₄	1.0E-03	1.93E-01	2.12E-01
N ₂ O	1.0E-04	1.93E-02	2.12E-02
CO ₂ e ⁷		10,238	11,282

Notes

1. VOC and HAP/TAP emissions are calculated utilizing emission factors in EPA AP-42 Section 1.4: Natural Gas Combustion and the natural gas pilot heat duty & enrichment gas heat duty.

2. Emission factors are based on EPA AP-42 Section 1.4: Natural Gas Combustion, Tables 1.4-3 (organics) and 1.4-4 (metals).

3. Total chromium emissions are estimated for permitting purposes and utilized in comparing facility-wide emission increases to the "chromium VI (and compounds)" minimum emission rate provided in LAC 33:III. Chpater 51. Chromium VI is speciated from total chromium for Environmental Justice (EJ) modeling purposes. Chromium VI is conservatively assumed to be 20% of total chromium based on information provided in Table 4-3, footnote I of the Emissions Estimation Protocol for Petroleum Refineries document (April 2015) for refinery fuel gas.

4. Based on EPA default factors in Subpart C Tables C-1 and C-2 for natural gas, rev. 11/29/2013.

5. Calculated based on the heat input, emission factors, and equations C-1b and C-8b of Subpart C. CO2e based on Subpart A Table A-1 factors.

CO₂, CH₄, or N₂O (metric tpy) = 1E-03 * Gas (MMBtu/yr) * Emission Factor (kg/MMBtu)

6. 1 metric ton = 1.102 US ton

7. CO2e = CO2, CH4, or N2O (tpy) * Global Warming Potential factor (GWP). GWPs from 40 CFR 98 Subpart A, Table A-1, rev. 11/29/2013.

CO ₂ GWP	1
CH_4 GWP	25
N ₂ O GWP	298

OURCE INFORMATION	
Source Description: Methanol Railcar and Tank Truck Loading	Calculation Date: 9/9/2022
Source ID No. RTLOAD	Calculated by: MO
Tempo ID No. EQT TBD	Reviewed by: AG

Description:

The Methanol Loading Operations source account for the vapors generated during methanol product loading in to tank trucks (TLOAD) and rail cars (RLOAD). Product loading in tank trucks and rail cars are for methanol only. Emissions from loading operations are collected by a dedicated vapor collection system and controlled by a vapor control unit that achieves at least 99% reduction of VOC/methanol. Annual emissions are estimated based on the maximum physical capability of the railcar and truck loading racks. Maximum hourly emissions are based on short term loading rates for simultaneously loading 10 railcars and 2 trucks, which is the maximum loading rate per current design.

Parameter	Basis	Unit	Source
Operating Hours		8,760 hr/yr	Hourly emission rate is based on 24 hr/day and 365 day/yr
Methanol Truck Loading Throughput		262,800 Mgal/yr	Process Design Basis
Methanol Railcar Loading Throughput		646,050 Mgal/yr	Process Design Basis
VOC Control Efficiency		99.0 %	Based on stack testing data
Maximum Loading Rate		1,000 gpm	Simultaneous Loading of 2 Trucks
Maximum Loading Rate		5,000 gpm	Simultaneous Loading of 10 Railcars
Max Hourly Loading Temperature	1	105 °F	Project Design Basis
Average Annual Loading Temp	1	91.3 °F	Average daily maximum ambient temperature (TAX) for August in Baton Rouge, LA (from AP-42, Table 7.1-7).
Loading Equation (AP-42 Section 5.2, Equation 1)		Whe	re : L _L = Loading Loss Emission Factor (lb/Mgal)
I = 12.46 * (S*D*M/T) * (1 off/100)			S - Saturation Factor (AD 42 Table 5.2.1)

L_L = 12.46 * (S*P*M/T) * (1 - eff/100)

S = Saturation Factor (AP-42 Table 5.2-1)

- P = True Vapor Pressure of Product (psia)
- M = Molecular Weight of Vapors (lb/lb-mol)
- T = Temperature of Product (R)
- eff = Vapor Recovery (%)

				Temp	erature	
Loading Operation	S1	P ² (psia)	Μ	°F	°R	Loading Factor (Ib/Mgal)
Annual TLOAD	1	3.668	32.04	91.3	551.3	2.66
Annual RLOAD	1.45	3.668	32.04	91.3	551.3	3.85
Max TLOAD	1	5.273	32.04	105	565	3.73
Max RLOAD	1.45	5.273	32.04	105	565	5.40

Uncontrolled Loading Emissions:

	Throug	hput	Capture	Conture VOC Emiss	
Loading Operation	Maximum Hourly (Mgal/hr)	Annual (Mgal/year)	Efficiency (%)	Maximum (Ib/hr)	Annual (ton/yr)
TLOAD	60	262,800	100.0%	223.53	349.05
RLOAD	300	646,050	100.0%	1,620.63	1,244.20

Example Calculations:

Annual (ton/yr) = Annual Loading Factor (lb/Mgal) x Annual Throughput (Mgal/yr) ÷ 2000 lb/gal Maximum (lb/hr) = Max Throughput (Mgal/hr) x Max Loading Factor (lb/Mgal)

Controlled Loading Emissions:

Operation	Product	Average (lb/hr)	Maximum (lb/hr)	Annual (ton/yr)
TLOAD	Methanol	0.80	2.24	3.49
RLOAD	Methanol	2.84	16.21	12.44
Total Methanol		3.64	18.44	15.93
Total VOC		3.64	18.44	15.93

Notes:

1. AP-42 Section 5.2, Transportation and Marketing of Petroleum Liquids, Table 5.2-1.

2. TVP based on Antoine's Coefficients for methanol and the specific loading temperatures of 91.3 and 105 degrees F.

SOURCE INFORMATION

Source Description: Tank Cleanings	
Source ID No. MTPCAP	
Tempo ID No. GRP TBD	

Calculation Date: 7/13/2022 Calculated by: MO Reviewed by: AG

Description:

Emissions, as represented below, are the result of tank cleaning activities for the 13.45 million galon Internal Floating Roof tanks, Methanol Product Tanks 2301 thru 2304. Typically, tank cleaning activities consist of draining the tank, standing idle periods, purging the vapor space, removal of sludge from the tank, and refilling the tank. Emissions are only generated during standing idle periods, purging the vapor space, removal of sludge from the tank, and refilling the tank. Emissions are calculated in accordance with API Technical Report 2568 (Evaporative Loss from the Cleaning of Storage Tanks), November 2007. For purposes of this calculation, we have conservatively assumed that the properties of the sludge are the same as those of the product being stored, and that no heel is present throughout the cleaning process, and that one quarter inch sludge depth is present. Emissions from these tank cleanings will be controlled by portable thermal oxidizer, which is permitted under GCXVII-15.

Operational Parameters

Tank Type(s):	IFR	True Vapor Pressure (P):	3.09 psia
Heel Type:	Drain-Dry	Atmospheric Pressure (P _a):	14.75 psia
Roof Leg Height (h _d):	5.00 feet	Liquid Density (W _I):	6.63 lb/gal
Tank Diameter (D):	220 feet	Vapor Molecular Weight (M _v):	32.04 lb/lb-mole
Tank Contents:	Methanol	Tank Bottom Slope (s):	0.24 in/ft
Number of Cleanings:	4 cleanings/yr	Temperature (T):	85 °F
			544.70 °R

Calculations

Standing Idle Emissions (L _s)					
$L_{\rm S} = 0.0063^* W_1^* (\pi/4)^* D^2$		1,587.78	lbs		
L _{SMAX} = (P*V _V /(R*T))*M _V *S =	:	2,214.86	lbs		
L _{S-SELECTED} =		1,587.78	lbs		
where:					
P =	True Vapor Pressure =			3.09	psia
Vv =	Volume of Vapor Space =			217,942.75	cubic feet
R =	Ideal Gas Constant =			10.731	psia ft ³ /lb-mole °R
T =	Temperature =			544.7	R
M _V =	Vapor Molecular Weight =			32.04	lb/lb-mole
K _s =	Standing Idle Saturation Factor	=		0.60	(dimensionless)
D =	Tank Diameter (D) =			220	feet
h _{le} =	Effective Liquid height =			0.08	feet
W _L =	Liquid Density =			6.63	lb/gal
h _v =	Height of vapor space =			5.73	feet
n _d =	Number of Days Standing Idle =	-		1	days

Vapor Space Purge Emissions (L_p) Lp = $(P^*V_V/(R^*T))^*M$

/(R*T))*M _V *S =		0.00	lbs		
where:					
P =	True Vapor Pressure =			3.09	psia
V _V =	Volume of Vapor Space =			190,066	cubic feet
R =	Ideal Gas Constant =			10.731	psia ft ³ /lb-mole ^o R
Τ=	Temperature =			544.7	R
M _V =	Vapor Molecular Weight =			32.04	lb/lb-mole
S =	Saturation factor =			0	Drain-Dry Tanks
h _V =	Height of vapor space =			5.00	feet
n _d =	Number of Days vapor space is p	ourged =		4	

Source Description: Tank Cleanings Source ID No. MTPCAP				Calculation Date: 7/ Calculated by: M
Tempo ID No. GRP TBD				Reviewed by: A
Sludge Removal Emissions (L _{SR})				
L _{SR} = 0.49*F _e *D ² *d _s *W ₁	5,660.53	lbs		
where:				
F _E =	fraction of sludge that evaporates =		0.20	
D =	Tank Diameter (D) =		220	feet
d _S =	Sludge Depth		0.18	inches
W _L =	Liquid Density =		6.63	lb/gal
n _{SR} =	Time for Sludge Removal =		1	days
Refilling Emissions (L _F)				
$L_F = (P^*V_V/R^*T)^*M_V^*S =$	553.72	lbs		
where:				
P =	True Vapor Pressure of incoming liquid =		3.09	psia
V _V =	Volume of Vapor Space =		217,943	cubic feet
R =	Ideal Gas Constant =		10.731	psia ft ³ /lb-mole °R
T =	Temperature =		544.70	R
M _V =	Vapor Molecular Wt of Incoming Liquid =		32	lb/lb-mole
S =	Saturation Factor of Clean Tank =		0.15	(dimensionless)
h _v =	Height of vapor space (after sludge removal) =	=	5.73	feet

Emissions per Tank Cleaning Event = L _S +L _P +L _{SR} +L _F =	7,802.03	lbs per cleaning event	
	3.90	tons/yr	

Uncontrolled Emissions from Four (4) Methanol IFR Tank Cleanings

	Vapor Weight	Emissi	on Rates
Pollutant	Fraction	Average (lb/hr)	Annual (tons/year)
Total VOC	1.00	3.56	15.60
Methanol	1.00	3.56	15.60

Controlled Emissions from Four (4) Methanol IFR Tank Cleanings

		Emission Rates		
Pollutant	Control Efficiency	Average	Annual	
		(lb/hr)	(tons/year)	
Total VOC	95%	0.18	0.78	
Methanol	95%	0.18	0.78	

SOURCE INFORMATION	
Source Description: Tank Landings	Calculation Date: 7/13/2022
Source ID No. MTPCAP	Calculated by: MO
Tempo ID No. GRP TBD	Reviewed by: AG

Description:

Emissions from tank landings were calculated using methodology from AP-42 Chapter 7.1 for Organic Liquid Storage Tanks. Emissions are based on conducting eight landings per year. Total standing idle losses, L_{SL} , are assumed to be from drain-dry tanks and are therefore represented as total clingage loss, L_{C} . Total filling losses are assumed to be for drain-dry tanks and are calculated the same as if the tank contain a liquid heel. The difference is a lower saturation factor is applied due to the lack of an "arrival" component, which is covered by the "clingage" loss. Emissions from tank landings are included as part of the Methanol Transfer and Product Tank CAP (MTPCAP).

Landing Loss $L_T = L_C + L_{FL}$ Where: L_T = total losses during roof landing, lb per landing episode L_C = clingage loss from drained dry tank, lb per landing episode L_{FL} = filling losses during roof landing, lb per landing episode Clingage Loss L_C = 0.0042*C_s*W₁*Area Where: 0.042 = conversion factor Cs = clingage factor for single component stock with light rust shell* Value Unit W_1 = density of the liquid (methanol) C Factor 0.042 1000gal/bbl Area = area of the tank bottom C_s* 0.0015 bbl/1000ft² W 6 63 lb/gal 38,013.27 Area ft *AP-42 Organic Liquid Storage Tanks Table 7.1-10 Lc 15.88 lb per event = Filling Loss $L_{FL} = (PV_V/RT)M_VS$ Where: P = calculated true vapor pressure of methanol at a storage temp of 104 F M_v = Methanol vapor molecular weight R = Ideal gas constant T = storage temperature of methanol in degrees Rankine, R, provided by KMe St. James Holdings LLC V_V = Volume of vapor space with a 2ft deck leg height; Project Design Basis S = filling saturation factor for drain dry tanks Value Unit Ρ 5.13 psia M 32.04 lb/lb-mole R 10 73 psia-ft³/lb-mole-°R 564 ν 76,026.54 ft³ s⁽³⁾ 0.15 309.40 lb per event L_{FL} = Loading Summary per Event Pollutant Clingage Loss (lb/event) Filling Loss (lb/event) Total Loss (lb/event) 15.88 309.40 325.28 VOC Methanol 15.88 309.40 325 28 Potential total Loading Emissions (two landings per tank a year for four tanks) **Maximum Emissions** Pollutant Emissions (lb/yr) Emissions (tpy) (lbs/hr) voc 2,602 0.30 1.30 Methanol 0.30 1.30 2,602 Notes: 1. AP-42 Chapter 7.1 Organic Liquid Storage Tanks updated June 2020 2. Data taken from AP-42 Chapter 7 Calculation Methodology 3. AP-42 Section 7.1 pg 45

Source Description: Portable Thermal Oxidizer	Calculation Date: 1/26/2023
Source ID No. GCXVII-15	Calculated by: JLS
	Reviewed by: AHN

Description:

The portable thermal oxidizer will be used to control emissions during tank cleanings. Emissions estimates below are for combustion pollutants resulting from oxidizer operation. Controlled VOC emissions are captured under M1 Tank Cleaning (GCXVII-14) and T1 IFR Tank Cleanings, which is permitted under the MTPCAP.

Parameter	Basis	Unit
Operating Hours per day	12	hours
Number of days per cleaning	1	day
Annual Operating Hours	84	hours
Total Methanol Loaded	18.12	tons
Methanol High Heating Value	9,840	Btu/lb
Degassing Heat Duty	4.24	MMBtu/hr
Natural Gas Fuel	640	scfm
NG Heating Value	1020	Btu/scf
NG Heat Duty	39.17	MMBtu/hr
Total Heat Duty	43.41	MMBtu/hr

Criteria Pollutants Emissions Summary

Combustion Pollutant	Emission Factor (Ib/MMBtu) ¹	Hourly (lb/hr)	Annual (tpy)						
Criteria Pollutants									
СО	0.082	3.58	0.15						
NOx	0.098	4.26	0.18						
SO ₂	0.0006	0.03	0.0011						
PM ₁₀	0.0075	0.32	0.01						
PM _{2.5}	0.0075	0.32	0.01						
VOC	0.0054	0.23	0.01						

HAP Emissions Summary²

Koch Methanol St. James, LLC KMe Facility GCXVII - Portable Thermal Oxidizer Emission Calculations

SOURCE INFORMATION

Source Description: Portable Thermal Oxidizer Source ID No. GCXVII-15 Calculation Date: 1/26/2023 Calculated by: JLS

Reviewed by: AHN

HAP Emissions Summary ²	Emission Eastern			Permitting		Requires Permitting?	
Combustion Pollutant	Emission Factor (Ib/MMscf) ³	Hourly (lb/hr)	Annual (tpy)	Threshold ⁴ (tpy)	HAP/TAP?		
Organic HAPs	•			•	•	•	
Methylnaphthalene 2.40E-05		9.22E-07	3.87E-08	5.00E-04	YES	NO	
3-Methylchloranthrene	1.80E-06	6.91E-08	2.90E-09	5.00E-04	YES	NO	
7,12-Dimethylbenz(a)nthracene	1.60E-05	6.14E-07	2.58E-08	5.00E-04	YES	NO	
Acenaphthene	1.80E-06	6.91E-08	2.90E-09	5.00E-04	YES	NO	
Acenaphthylene	1.80E-06	6.91E-08	2.90E-09	5.00E-04	YES	NO	
Anthracene	2.40E-06	9.22E-08	3.87E-09	5.00E-04	YES	NO	
Benz(a)thracene	1.80E-06	6.91E-08	2.90E-09	5.00E-04	YES	NO	
Benzene	2.10E-03	8.06E-05	3.39E-06	5.00E-04	YES	NO	
Benzo(a)pyrene	1.20E-06	4.61E-08	1.94E-09	5.00E-04	YES	NO	
Benzo(b)fluoranthene	1.80E-06	6.91E-08	2.90E-09	5.00E-04	YES	NO	
Benzo(g,h,i)perylene	1.20E-06	4.61E-08	1.94E-09	5.00E-04	YES	NO	
Benzo(k)fluoranthene	1.80E-06	6.91E-08	2.90E-09	5.00E-04	YES	NO	
Butane	2.10E+00	8.06E-02	3.39E-03	5.00E-04	NO	NO	
Chrysene	1.80E-06	6.91E-08	2.90E-09	5.00E-04	YES	NO	
Dibenzo(a,h)anthracene	1.20E-06	4.61E-08	1.94E-09	5.00E-04	YES	NO	
Dichlorobenzene	1.20E-03	4.61E-05	1.94E-06	5.00E-04	YES	NO	
Ethane	3.10E+00	1.19E-01	5.00E-03	5.00E-04	NO	NO	
Fluoranthene	3.00E-06	1.15E-07	4.84E-09	5.00E-04	YES	NO	
Fluorene	2.80E-06	1.08E-07	4.52E-09	5.00E-04	YES	NO	
Formaldehyde	7.50E-02	2.88E-03	1.21E-04	5.00E-04	YES	NO	
n-Hexane	1.80E+00	6.91E-02	2.90E-03	5.00E-04	YES	YES	
Indeno(1,2,3-cd)pyrene	1.80E-06	6.91E-08	2.90E-09	5.00E-04	YES	NO	
Naphthalene	6.10E-04	2.34E-05	9.84E-07	5.00E-04	YES	NO	
Pentane	2.60E+00	9.98E-02	4.19E-03	5.00E-04	NO	NO	
Phenanathrene	1.70E-05	6.53E-07	2.74E-08	5.00E-04	YES	NO	
Propane	1.60E+00	6.14E-02	2.58E-03	5.00E-04	NO	NO	
Pyrene	5.00E-06	1.92E-07	8.06E-09	5.00E-04	YES	NO	
Toluene	3.40E-03	1.31E-04	5.48E-06	5.00E-04	YES	NO	
Total PAH		2.47E-06	1.04E-07	5.00E-04	YES	NO	
Metals							
Arsenic	2.00E-04	7.68E-06	3.23E-07	5.00E-04	YES	NO	
Barium	4.40E-03	1.69E-04	7.10E-06	5.00E-04	YES	NO	
Beryllium	1.20E-05	4.61E-07	1.94E-08	5.00E-04	YES	NO	
Cadmium	1.10E-03	4.22E-05	1.77E-06	5.00E-04	YES	NO	
Chromium⁵	1.40E-03	5.38E-05	2.26E-06	5.00E-04	YES	NO	
Chromium IV ⁵		1.08E-05	4.52E-07	5.00E-04	NO	NO	
Cobalt	8.40E-05	3.23E-06	1.35E-07	5.00E-04	YES	NO	
Copper	8.50E-04	3.26E-05	1.37E-06	5.00E-04	YES	NO	
Manganese	3.80E-04	1.46E-05	6.13E-07	5.00E-04	YES	NO	
Mercurv	2.60E-04	9.98E-06	4.19E-07	5.00E-04	YES	NO	
Molybdenum	1.10E-03	4.22E-05	1.77E-06	5.00E-04	NO	NO	
Nickel	2.10E-03	8.06E-05	3.39E-06	5.00E-04	YES	NO	
Selenium	2.40E-05	9.22E-07	3.87E-08	5.00E-04	YES	NO	
Vanadium	2.40E-03	8.83E-05	3.71E-06	5.00E-04	NO	NO	
Zinc	2.90E-03	1.11E-03	4.68E-05	5.00E-04	YES	NO	

Notes:

1. Emission factors are based AP-42, Table 1.4-1 & 1.4-2 (7/98). There is no published emission factor for emissions of $PM_{2.5}$, so they are assumed to be 100% of PM_{10} emissions as a conservative measure.

2. HAP/TAP emissions are calculated utilizing emission factors in EPA AP-42 Section 1.4: Natural Gas Combustion and the natural gas heat duty only.

3. Emission factors are based on EPA AP-42 Section 1.4: Natural Gas Combustion, Tables 1.4-3 (organics) and 1.4-4 (metals).

4. Emissions less than permitting thresholds of 0.0005 tpy will not be included in the permit.

5. Total chromium emissions are estimated for permitting purposes and utilized in comparing facility-wide emission increases to the "chromium VI (and compounds)" minimum emission rate provided in LAC 33:III. Chpater 51. Chromium VI is speciated from total chromium for Environmental Justice (EJ) modeling purposes. Chromium VI is conservatively assumed to be 20% of total chromium based on information provided in Table 4-3, footnote I of the Emissions Estimation Portocol for Petroleum Refineries document (April 2015) for refinery fuel gas.

APPENDIX B BACT ANALYSIS DOCUMENTATION

Koch Methanol St. James, LLC - KMe Facility Summary of RBLC Database Search Process 99.009 - Industrial Process Cooling Towers Carbon Dioxide Equivalent (CO2e)

						PRIMARY		THROUGHPUT			EMISSION	EMISSION
RBLCID	FACILITY NAME	CORPORATE OR COMPANY NAME	PERMIT ISSUA	PROCESS NAME	PROCCESS	FUEL	THROUGHPUT	UNIT	POLLUTANT	CONTROL METHOD DESCRIPTION	LIMIT 1	LIMIT 1 UNIT
										Minimize methane leaks into cooling		
TX-0774	BISHOP FACILITY	TICONA POLYMERS, INC.	11/12/2015	Cooling Tower	99.009		10400		Carbon Dioxide Equivalent (CO2e)	water.	420	TPY
TX-0801	PL PROPYLENE HOUSTON OLEFINS PLANT	FLINT HILLS RESOURCES HOUSTON CHEMICAL LLC	6/24/2016	Cooling Tower	99.009		0		Carbon Dioxide Equivalent (CO2e)	% drift design	0.005	DRIFT
										Use of a non-contact cooling tower		
TX-0888	ORANGE POLYETHYLENE PLANT	CHEVRON PHILLIPS CHEMICAL COMPANY LP	4/23/2020	COOLING TOWERS	99.009		0		Carbon Dioxide Equivalent (CO2e)	design and monthly monitoring.	0)
TX-0889	SWEENY OLD OCEAN FACILITIES	CHEVRON PHILLIPS CHEMICAL COMPANY LP	8/8/2020	cooling tower	99.009		0		Carbon Dioxide Equivalent (CO2e)	Good operational practices, non-contact	0)

Note, an RBLC database search was completed for carbon monoxide (CO) from Industrial Process Cooling Towers (Process 99.009). However, the search did not result in any applicable sources for CO BACT from cooling towers.